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Abstract

United States Coast Guard District 14 is responsible for the execution of eleven statu-

tory missions across the Pacific region. Despite having the largest geographic area

of responsibility (AOR), District 14 has command of among the fewest resources to

accomplish these missions. When search and rescue (SAR) emergencies occur, these

events take immediate priority because the ability to rapidly coordinate available

assets can be the difference between saving or losing a life. Using historic records

of SAR incidents for District 14, we leverage an approach called the stochastic zonal

distribution model to evaluate spatiotemporal trends in emergency rates and response

strategies for the probabilistic modeling of future SAR events’ location and frequency.

The results from this analysis inform the demand parameters of three location prob-

lem formulations, which determine the operational posture of the District 14 fleet

that minimizes the response to forecasted SAR emergencies. This research provides

recommendations regarding the seasonal posturing of assets around the Hawaiian is-

lands, the expansion of Coast Guard stations across the Pacific Ocean, the acquisition

and placement of new maritime assets, and the potential impact of forward deploying

assets away from their present homeports.
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SEARCH AND RESCUE OPERATIONS FORECASTING AND OPTIMIZATION

I. Introduction

1.1 Motivation and Background

Per the Homeland Security Act of 2002, the United States Coast Guard (USCG)

is a branch of the Department of Homeland Security which operates across the na-

tion, both within the territorial sea and the high seas, in support of eleven explicit

missions regarding safety and security along waterways and coastal borders [1]. The

USCG achieves its eleven assigned missions through the use of its operational assets,

generally categorized as fixed wing aircraft, rotary wing aircraft, cutters, and boats.

In instances of the search and rescue (SAR) mission, these events take immediate pri-

ority because the ability to rapidly coordinate available assets can be the difference

between saving or losing a life. To accomplish this mission, the USCG has direct com-

mand of its own maritime assets (boats and cutters) and aviation assets (fixed wing

and rotary wing). Additionally, responding units typically coordinate with nearby

US Navy and commercial vessels for support, but the availability of these resources

are not guaranteed.

Organizationally, the command and control of USCG operations is divided into

two areas: Atlantic and Pacific. Each area is comprised of districts, which in turn

are comprised of sectors and stations. USCG District 14 (D14) is responsible for

ensuring these mission requirements across the Pacific Ocean, with maritime and

aviation assets homeported either on the Hawaiian Islands and in Guam. Despite

having the largest geographic area of responsibility (AOR), D14 is also allocated

1
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among the fewest resources of all USCG Districts. As a result, these vessels are

frequently tasked with multiple missions in numerous regions of the Pacific, creating

a scheduling problem at the district- and sector-levels. To better inform the scheduling

of their maritime and aviation assets, D14 seeks to better anticipate the times and

locations of future SAR events within their AOR.

1.2 Problem Statement

This thesis was conducted in partnership with USCG Research & Development

Center and USCG D14. Given historical data of SAR events and the operational

constraints of D14’s currect assets, this research sought to locate the D14 maritime

and aviation assets to minimize the anticipated response time for future SAR events.

The scope of this thesis did not grant consideration to D14’s other mission areas.

Also, the availability of United States Navy or commercial fishing vessels to assist

with SAR events was not considered.

1.3 Research Questions

To address the problem statement, this thesis answered the following three related

questions:

1. Do external factors (e.g., tourism levels, cruise ship activity, and weather condi-

tions) correspond to trends in SAR activity for specific regions of D14’s AOR?

2. Where in D14’s AOR are SAR events expected to occur and at what frequency

should D14 expect to deploy maritime and aviation assets in response?

3. Given the forecasted level of demands, present USCG asset availability, and the

operational constraints of each asset type, what are the best locations within

2
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D14’s AOR to home-port or deploy their maritime and aviation assets to mini-

mize the anticipated response time for future SAR events?

1.4 Organization of Thesis

This first chapter provides a brief discussion of the USCG SAR mission as well

as some of the challenges presently facing D14. Chapter 2 reviews into preexisting

research regarding the three outlined research questions. Chapter 3 describes the

methodologies implemented to answer the three research questions and discusses the

results of Research Questions 1 and 2. Chapter 4 provides an analysis of the location

models from Research Question 3 and discusses these results. Chapter 5 summarizes

the insights garnered from this research, the proposed courses of action for the research

sponsors, and recommendations for future research into this topic.

3
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II. Literature Review

2.1 Description of Research Area

This thesis sought to optimize the location of USCG D14 maritime and aviation

assets in anticipation of future SAR events. To that end, this study was divided into

three research areas: regression analysis, spatiotemporal forecasting, and network

flow. These areas of study informed the three research questions which comprised the

core of this thesis.

First, we isolated geospatial clusters of historical SAR events and compared time-

series trends in events to external factors such as tourism rates or cruise activity

associated with nearby landmasses. While no previous research regarding such anal-

ysis in relation to SAR events was found, studies into the evaluation of geospatial

trends in crime data and the taxi industry were considered as precedent. This thesis

developed a novel multiechelon clustering approach which, to the best of our knowl-

edge, is unique to previous research concerning Coast Guard operations.

Second, we considered two approaches for spatiotemporal forecasting that had

previously been implemented in relation to Coast Guard SAR events: zonal distri-

bution modeling and a Monte Carlo simulation. The challenges in applying these

methodologies to this thesis came from the geographic expanse of D14’s AOR. This

thesis proposed a novel adaptation of these previous techniques by introducing the

stochastic zonal distribution model. This model allowed for both the geographic and

probabilistic representation of SAR events, which were subsequently evaluated using

a Monte Carlo simulation.

Third, we constructed network flow models for optimizing the location of USCG

assets across the D14-accessible landmasses in the Pacific. While we found previous

research that looked into the location problem for SAR response assets, this thesis

4
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distinguished itself by including consideration of the operational capabilities and lim-

itations of both maritime and aviation units across a region with limited available

landmasses. The following review of existing research considers each of these three

components separately.

2.2 Research Question 1: Regression Analysis

This summary of previous research relates to multivariate methods that can be

employed to identify relationships between regional SAR trends and external factors.

An early application of multivariate regression analysis was manpower requirement

forecasting for businesses and governments. Insights from these initial efforts in-

formed how regression methods were implemented in later research. We did not find

studies involving multivariate techniques on SAR data, but instances of these similar

techniques for geospatial data did exist with crime data mapping and analysis of the

taxi industry.

Research efforts into the relationship between workload and external drivers first

began in the 1940s and experienced a spike in academic interest during the 1960s

and 1970s. Organizations within the business and government communities sought

to improve the manpower planning process, and a critical component of this process

is manpower requirement forecasting. A common statistical technique for forecasting

manpower requirements is regression modeling, wherein models to predict workload

use what Verhoeven [2] refers to as “explanatory variables.” Analysts compare histor-

ical data on potential explanatory variables to historical workload levels and evaluate

any correlation between these values. Whereas correlation between explanatory vari-

ables and workload levels does not dictate that one necessarily causes the other, these

relationships can be used to forecast future workload. Drui [3], for example, utilized

this approach in quantifying the workload across a company and compared projected

5
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manpower requirements to actual employment levels.

Specifically related to geospatial activity, advances in crime data analytics have

helped develop the academic foundation quantifying relationships between incidents

and explanatory variables. Rummens et al. [4] utilized both logistic regression and

neural networks to predict the location and time of three crime types in a large

Belgian city and compared the effectiveness of each approach. Their study showed

that neural networks tended to have a greater ability to correctly predict criminal

events, though they suffered in their precision by over-predicting events. The logis-

tic regression models, while excelling in their simplicity, routinely underperformed in

accuracy compared to neural networks. The research team concluded that the best

performance came from a model that blended the techniques of both logistic regres-

sion and neural networks. Fitterer et al. [5] also implemented a logistic regression

methodology in their forecasting of criminal events in Vancouver, measuring the rela-

tionship between environmental characteristics of regions in Vancouver and historical

breaking-and-entering events.

Similarly, the evolving competitive landscape of the taxi industry has led to similar

advances in this field of research. As competitors such as Uber and Lyft have grown

in popularity, it has become more pertinent for traditional taxi companies to identify

explanatory variables to predict both when and where customer demand will occur

to decrease customer wait-time and maintain relevance. Taxi demand problems are

particularly sensitive to both spatial and temporal considerations as the movement

of potential riders tends to shift to different types of venues throughout the day and

week [6, 7]. For their study into the distribution of taxi rides across New York City,

Peng et al. [6] implemented a k -means approach to cluster 38,024 popular venues into

500 regions. The aggregation of venues into these regions enabled the researchers to

categorize the types of venues within these groups and implement another k -means
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cluster to reduce the 500 regions into four zones. The team was able to analyze trends

in taxi demand based on location, venues type, time of the day, and weather.

While these authors have established a foundation for the forecasting of events

using explanatory variables, their research is confined to the parameters of individual

cities. A challenge for any study into geospatial events is the need to effectively group

incidents, frequently based on location or incident type. For Rummens et al. [4] and

Fitterer et al. [5], their methodologies implemented 200 meter by 200 meter grids over

their cities of study to group historical crime events; this straightforward approach

is not feasible for a study which spans the the Pacific Ocean. The research by Peng

et al. [6] is most applicable to our research effort as they incrementally implemented

a k-means clustering methodology to gradually group similar events into tractable

zones.

2.3 Research Question 2: Spatiotemporal Forecasting

This discussion relates to methods for predicting the location and time of events

based on historical information. The need to effectively anticipate the location and

time of events is academically prevalent in the fields of policing and criminology. Since

the late 1980s, there has been steady research incorporating geospatial analytics into

combating crime through the development of crime data hot-spot maps [8]. The

implementation of this hot-spot analysis has had positive quantifiable results on the

ability of police units to respond to criminal activity, and thus reduce crime rates [5].

When utilizing geographic information systems such as ArcGIS, a prevalent tech-

nique for spatial analysis is kernel density estimation (KDE). The KDE approach

is popular because it effectively visualizes data in a manner that is comprehensible

and aesthetically-pleasing for the typical end-user [9]. When implemented, the KDE

method assigns a density function to each data point. For points that are within
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proximity to each other relative to a specified bandwidth, they are grouped into a

kernel and their density functions are combined. The resulting image is a smooth

heat map having greater densities illustrated over areas that have the most activity

clustered closely together [8, 10]. For example, Khalid et al. [11] utilized KDE tech-

niques through ArcGIS 10 to develop heat maps of crime data in Faisalabad, Pakistan

for 2012 and 2013. From these visualizations, the team was able to assess shifts of

crime patterns across the city and evaluate potential causes of these shifts.

Focusing in on the realm of SAR forecasting, previous studies have considered a

stochastic methodology given the independent nature of maritime search and rescue

events. As a result, much of this research has implemented different techniques for

identifying distributions of events and then running simulations to model probable

scenarios of future events. Akbari et al. [12] solved the problem of modeling the SAR

demand for the Canadian Coast Guard using the KDE method and running a simu-

lation to project future events. Afshartous et al. [13] developed a similar simulation

approach, wherein distress calls within USCG District 7’s AOR were clustered into

groups by proximity and each was assigned an associated Poisson distribution. A

simulation was subsequently run based on the distributions assigned to these group-

ings.

The zonal distribution model, as developed by Azofra et al. [14], was created as a

means of quantifying demand into nodes referred to as “superaccidents” to solve the

SAR resource allocation problem. The zonal distribution model starts by identifying

groups, called “zones”, based on proximity and method of responding to distress calls.

For each of these zones, a centroid location between the data points is identified and is

often weighted based on the intensity of each individual distress call. These centroid

locations thus become the aggregated superaccidents which serve as demand nodes

for the resource allocation problem, for which the arc lengths are associated with the
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distance from a SAR asset’s port that is capable of responding to demand from the

superaccident. Razi and Karatas [15] implemented the zonal distribution model to

chart SAR demand in the Turkish Coast Guard’s AOR, using k -means clustering to

group the distress calls into their initial zones.

The methods previously utilized by Afshartous et al. [13], Azofra et al. [14],

and Razi and Karatas [15] informed the research in this thesis. Despite the previous

implementation of these techniques specifically for Coast Guard SAR problems, the

research in this thesis differs in terms of geographic magnitude of the AOR, which

increases the complexity of identifying spatiotemporal patterns. Specifically, the fi-

delity with which events were compartmentalized by Afshartous is not viable across

the expanse of the Pacific Ocean; very small grids would be required around the is-

lands while very large grid would be required to span the AOR. Nevertheless, it is

desirable to maintain the probabilistic aspects of Afshartous’s research while leverag-

ing the modeling techniques of Azofra which are more appropriate for the size of this

AOR. It was with this motivation that we developed the stochastic zonal distribution

model.

2.4 Research Question 3: Network Flow

Since the 1940s, extensive research has gone into studying the flow of resources

over a network. Specifically, the Hitchcock-Koopman Transportation Problem is a

linear programming formulation designed to model this flow of resources. In this

model, there are m supply nodes and n demand nodes, with supply nodes cumula-

tively possessing an amount of resources that is equal to the total demand for those

resources:

m∑
i=1

si =
n∑
j=1

dj (1)
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Connecting supply and demand nodes are arcs with various costs (ci,j). The objective

is to minimize the cost of transporting the resources from the supply nodes to the

demands [16, 17, 18].

min
n∑
j=1

m∑
i=1

ci,jxi,j (2)

subject to:
n∑
j=1

xi,j = si ∀ i = 1, ...,m (3)

m∑
i=1

xi,j = dj ∀ j = 1, ..., n (4)

xi,j ≥ 0 (5)

Votaw and Orden [18] showed that a real-world personnel assignment problem

could be modeled using the Hitchcock-Koopman Transportation Problem, and Kuhn’s

Hungarian Algorithm was developed as a special class of transportation problems

to handle assignment problems. Bazaraa et al. [17] explain that, when using the

Hungarian Algorithm, it is assumed that there are m people and m jobs with the

assignment of each person to a job incurring a cost of ci,j. Conversely, this problem

can be easily transformed with the objective of maximizing the contribution each

person brings to a job, as shown in (6)-(8).

min
m∑
j=1

m∑
i=1

ci,jxi,j (6)

subject to:
m∑
j=1

xi,j = 1 ∀ i = 1, ...,m (7)

−
m∑
i=1

xi,j = −1 ∀ j = 1, ...,m (8)

xi,j ∈ {0, 1} ∀ i, j = 1, ...,m (9)
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A strength of network flow methodology is its versatility. Glover and Kingman

[19] posit that approximately 70% of real-world problems where a mathematical pro-

gram can be used to model the scenario either contain or can be transformed into

a network flow problem. Furthermore, Bazaraa et al. [17] note that transformation

can be made to convert any transportation problem into an assignment problem.

Charnes et al. [20] note the elegance of the Kuhn’s Hungarian Algorithm and opt not

to enhance Kuhn’s method because “[s]imple and efficient for this class of problems,

this algorithm would be hard to improve upon to any significant degree.” For the

duration of their paper, they discuss instead how assignment models can be similarly

constructed using techniques such as multi-objective optimization and dynamic pro-

gramming. Specifically, multi-objective optimization allows for the consideration of

multiple attributes the applicants have and jobs may require, and dynamic program-

ming is used to model the iterative forecasting of personnel assignments to meet the

goals of multiple time periods.

A critical weakness of deterministic network flow methods is the underlying as-

sumption that the cost or contribution of a particular assignment can be definitively

known. In practice, these values are typically predictions having associated levels of

uncertainty; stochastic methods are required to effectively model these. King’s work

approaches the personnel assignment problem from a stochastic perspective, outlining

methods of addressing uncertainty in expected performance. King’s [21] Constrained

Discriminant Assignment method incorporates the concepts that each applicant for

a job has the potential of being successful at multiple jobs and that organizations

may value success differently for different jobs. Specifically, the objective becomes

maximizing the expected organizational value of an assignment scheme as shown in

Equation (10) where V (j) represents the organizational value of job j, pj(Xi) rep-

resents the probability of person i being successful at job j, and yij is the binary
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decision indicating whether person i is assigned to job j.

max
m∑
i=1

m∑
j=1

V (j)pj(Xi)yij (10)

As it pertains to the allocation of Coast Guard assets, there has been limited

research in the past. Much of the existing research in this area, for example, focuses

on the scheduling problem inherent in Coast Guard operations by evaluating the

general assignment of specific Coast Guard assets given station requirements across all

mission sets. Wagner and Radovilsky [22] developed the Excel-based boat allocation

tool which has been implemented by the USCG to optimize the allocation of all

USCG boat assets across 178 stations. Brown et al. [23] created a mixed-integer

linear program to model the weekly patrol scheduling of cutters to meet all applicable

mission areas for USCG District 1.

In relation to SAR missions, previous research tends to consider spatiotemporal

models of rescue events to optimize the assignment of a single resource type to meet

demand. Razi and Karatas [15] implement a zonal distribution model to simulate

rescue events occurring within the Turkish SAR region and then implemented a multi-

objective mixed-integer program to assign Coast Guard boats to meet these demands.

Karatas et al. [24] utilized both integer programming and simulation to assign Turkish

Coast Guard helicopters to meeting various demand scenarios. Afshartous et al.

[13] considered a p-uncapacitated facility location problem in relation to the optimal

locations of air stations in responding to distress calls off the Gulf Coast for USCG

District 7. None of these previous efforts attempt to locate various types of both

maritime and aviation assets as is done in this research. Similarly, this research

differs from the previous studies by considering the possibility of forward deployment

of USCG assets to regions in anticipation of seasonal SAR trends.
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2.5 Summary

In summary, previous research efforts into the prediction of workload, forecasting

of spatiotemporal events, and location problems provide a solid foundation for pro-

ceeding with this study. The main contributions of this thesis to the present research

are:

• The hierarchical clustering of historical spatiotemporal data based on resources

used in response, the team coordinating the response, and the geographic loca-

tion of the events.

• The analysis of external data and its relationship to subsets of spatiotemporal

SAR incidents.

• The development of the stochastic zonal distribution model for representing

spatiotemporal events across a large geographic region.

• The quantification of differing response strategies with varying probabilities for

each region.

• The development of a location model which incorporates both maritime and

aviation assets.

• An analysis of the effectiveness of asset forward-deployment in anticipation of

seasonal SAR events.
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III. Methodology

3.1 Data Discussion and Assumptions

3.1.1 Historical SAR Data

For this thesis, the historical SAR dataset was pulled from the USCG Marine In-

formation for Safety and Law Enforcement (MISLE) database by the USCG Research

and Development Center. The information provided was a list of SAR cases spanning

from December 2010 to May 2018 and a variety of associated operational information

regarding each of these incidents. Throughout this research, the limitations of the

USCG records were discussed with subject matter experts and considered. The basics

of each case logged in the database (e.g., a SAR event occurred on a specific date at

specified GPS coordinates using specified resources) are largely accurate, but there

is not always agreement on selected case details regarding the duration of the events

or the degree to which any of the USCG’s eleven statutory mission sets may have

overlapped in the course of the event. As a result of these known data limitations,

only the basic information of each event (type, date, location, resources) were used

in this thesis. The data was cleaned and clustered using scripts written in Python.

The scope of this thesis was limited to SAR events which could have required the

deployment of USCG assets in response within the District 14’s AOR. To this end,

SAR cases with the subtype “MEDICO” were notable. A subtype of “MEDICO”

refers to an event where a vessel or person in distress required only medical consul-

tation; that is, a medical professional speaks to the distressed party via phone or

radio communication and relays medical advice to remedy the immediate situation.

As no D14 assets are physically dispatched for a SAR operation in the case of a

“MEDICO” event, these incidents were removed from consideration in the analysis.

While there were a number of cases within the MISLE dataset which had no record
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of assets being dispatched in response, these did not appear to correspond to specific

incident subtypes or geographic regions; it is assumed that the decision to dispatch

assets in response to these cases was made based on the individual characteristics of

the particular event. As such, these incidents remained within the dataset for further

consideration.

This thesis defined the D14 AOR as the Honolulu Maritime Search and Rescue

Region, provided in the Fourteenth Coast Guard District Search and Rescue Plan

dated 27 August 2014 [25]; Figure 1 depicts this region. Within this region, D14

divides the responsibility of SAR response between the headquarters and the two

subordinate sectors: Sector Guam is responsible for most of the events to the west

of 165◦E, Sector Honolulu is responsible for most of the events around the Hawaiian

Islands, and D14 headquarters coordinates the response to events throughout the rest

of the region.

Figure 1. Honolulu Maritime SAR Region [25]
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Given the scope of this thesis, SAR cases in the MISLE database were filtered

based on geographic location. SAR cases whose MISLE records did not provide GPS

coordinates were removed from the dataset. For those SAR cases where GPS data was

available, these coordinates were then compared to which team within D14 was re-

sponsible for responding. Cases were identified where there was an apparent mismatch

between where the GPS coordinates indicated the event occurred and which team was

responsible for coordinating the response; the preponderance appeared to be a sys-

tematic data entry error. When longitudes are converted from degree/minute/second

notation (e.g., 157◦47′59.9′′W) to decimal notation (e.g., −157.94972222◦), it is cus-

tomary for longitudes east of the Prime Meridian to be designated using positive

decimal notation and longitude west of the Prime Meridian to be designated using

negative decimal notation. It was found that many of the noted discrepancies in the

GPS data were accidentally labeling events near the Hawaiian Islands using positive

longitudes and labeling events near Guam using negative longitudes. There were 97

instances out of 4,187 records (2.32%) where case information confirmed this error

was at fault and the longitudes were corrected by multiplying by -1.

After cleaning the data to correct the erroneous GPS coordinates, SAR cases that

were recorded as occurring outside the D14 AOR were removed. Referring to Figure

1, all but one of the boundaries are defined by a single latitude or longitude and were

therefore relatively simple to apply to the dataset. The boundary between Reference

Point 1 and Reference Point 16 is less straightforward, as the boundary is not a

straight line between those two coordinates but rather the curve which represents the

shortest distance between these two points on the surface of the Earth. Assuming

a spherical Earth, this is the arc segment of the great circle that intersects both

coordinates. Therefore, this boundary was represented not by the equation of the

specific arc segment between Reference Points 1 and 16 but rather by the plane on
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which the corresponding great circle exists. The equation for this plane is computed

using three points (i.e., P, Q, and R) that are known to exist on the plane. Point P is

the center of the Earth with radius = 0. Point Q is Reference Point 1 with latitude

φ = 40◦( π
180

) = 0.6981 radians, longitude θ = −150◦( π
180

) = −2.6179 radians, and

radius = 3440.27 nautical miles from the center of the Earth. Similarly, point R is

Reference Point 16 with latitude φ = −3.3927667◦( π
180

) = −0.0592 radians, longitude

θ = −111.3333333◦( π
180

) = −1.9431 radians, and radius = 3440.27 nautical miles

from the center of the Earth. The spherical coordinates were converted to Cartesian

coordinates using Equations (11), (12), and (13).

x = r ∗ cos(φ) ∗ cos(θ) (11)

y = r ∗ cos(φ) ∗ sin(θ) (12)

z = r ∗ sin(φ) (13)

These computations yielded the following Cartesian coordinates for the three

points: P = (0, 0, 0), Q = (-2282.32, -1317.70, 2211.37), and R = (-1249.36, -

3198.93, -203.59). A plane is defined mathematically by a point on the plane and

a normal vector which is orthogonal to the plane. The normal vector can be com-

puted by taking the cross-product of two vectors on the plane. In this case, vectors

−→
PQ = [−2282.32,−1317.70, 2211.37] and

−→
PR = [−1249.36,−3198.93,−203.59] were

crossed to identify the normal vector −→n = [7342289.12,−3227457.5, 5654727.99]. Us-

ing the normal vector and point P, the equation of the plane in Cartesian space is

7342289.12x − 3227457.5y + 5654727.99z = 0. The GPS coordinates for the SAR

events were converted to Cartesian coordinates using Equations (11)-(13), and any

SAR events above the plane (i.e., 7342289.12x− 3227457.5y+ 5654727.99z > 0) were

removed from the dataset.
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A summary of the data cleaning is captured in Table 1. Following the data

cleaning, this research retained 91.52% of the provided SAR cases for further analysis.

Table 1. Summary of the data cleaning processes

Number of SAR Cases

Initial Dataset 4315
MEDICO Events 90

Missing GPS Data 38
Outside SAR Region 238

Final Dataset 3949

Given that 5.52% of the provided SAR cases were recorded to have occurred

outside the SAR region, these cases were examined closer to discern what was causing

these levels. Of the 238 cases outside the D14 AOR, 165 were assigned to Sector Guam

for response; Table 2 provides a summary of the monthly time-series data for these

cases. For comparison, the final dataset that was considered in this thesis contains

1093 cases with Sector Guam listed as the owning department. This implies that

13.12% of the non-MEDICO, fully annotated SAR cases from December 2010 thru

May 2018 for which Sector Guam responded to occurred outside the D14 AOR. It

is unclear whether this anomaly is due to input errors in MISLE or whether Sector

Guam routinely operates in a rescue capacity beyond the bounds of the U.S. SAR

region.

Table 2. Summary of Sector Guam SAR cases that occurred outside District 14 AOR

J F M A M J J A S O N D Total

2010 0 0
2011 2 2 1 0 1 2 3 3 3 9 6 5 37
2012 2 5 0 3 1 2 3 1 1 1 0 2 21
2013 0 1 3 6 1 0 1 2 2 0 1 6 23
2014 4 3 3 2 4 8 2 5 1 3 2 2 39
2015 1 2 2 6 2 2 0 0 3 3 2 1 24
2016 1 2 0 2 1 0 1 0 3 2 0 0 12
2017 0 1 0 1 1 1 0 1 0 0 1 2 8
2018 0 0 0 1 0 1
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3.1.2 Assumptions

Throughout the course of this thesis, a number of assumptions were made due

to available information or ease of computational demand. First, it is assumed that

the historical SAR data is indicative of future trends in the region’s SAR mission.

Likewise, it is assumed that the historical data following aforementioned data cleaning

is an accurate reflection of the SAR mission responsibilities within D14’s AOR from

December 2010 - May 2018. All of the dates, locations, incident subtypes, and asset

information for the historical SAR cases are assumed to be accurate.

Another assumption relates to the resources dispatched to resolve a SAR case.

When a SAR case is initiated, D14 considers the specific requirements of the event

as well as the availability of nearby USCG, US Navy, commercial vessels, and private

vessels. However, the availability of external assets is beyond the control of D14 when

conducting their SAR mission. Therefore, this thesis placed the responsibility of all

emergent SAR events on only the maritime and aviation assets that belong to D14.

The asset data in the case records was synthesized to convert the historic use of

external assets to the present-day D14 resources. Specifically, each resource listed as

having been dispatched for a SAR event in MISLE was categorized for this research

as either aeronautical or maritime. Given the limited mission range of boats and

helicopters, it is assumed that any maritime resources that respond to a SAR event

within the boat mission range are boats, and any aeronautical assets that respond

to a SAR event within this range are helicopters; events such as these are designated

as boat events throughout the remainder of this thesis. Similarly, it is assumed that

any maritime resources to respond to a SAR event outside the boat mission range are

cutters and any aeronautical assets to respond to a SAR event outside this range are

fixed-wing aircraft; events such as these are designated as cutter events throughout

the remainder of this thesis. More information regarding how these SAR events were
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differentiated is discussed in Section 3.2.

The last of our assumptions relate to the distance measurements that were com-

puted throughout this research. When distances are calculated throughout this thesis,

these values are the Haversine (i.e., great-circle) lengths which refer to the shortest

distance between two points on the surface of a sphere. The haversine distance for-

mula, shown in Equation (14), is computed based on the radius of the Earth r, the

latitude of the coordinates φ, and the longitude of the coordinates θ.

d = 2rarcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1)cos(φ2)sin

2

(
θ2 − θ1

2

))
(14)

With this distance calculation, there is an underlying assumption regarding the

purely spherical nature of the Earth, which is not the case but does serve as an accept-

able approximation. Additionally, the navigation of resources around landmasses is

not considered in this research’s computations and any references to distance through-

out this research are in nautical miles since the operational constraints of USCG assets

are conventionally expressed in nautical miles.

3.2 Clustering Methods and Discussion

Afshartous et al. [13] described the limitations of aggregating data points for

modeling SAR operations and the subsequent loss of fidelity that results. Given that

the geographic size of D14’s AOR exceeds 12 million square nautical miles, it was

determined that aggregation of the historic data was appropriate for this problem.

Prior to implementing a clustering methodology, SAR events were categorically clas-

sified based on the types of assets used to respond to the emergency (boat events and

cutter events as described in Section 3.1.2.) and which SAR team coordinated the

response (Guam and Hawaii). It was noted during early discussions with subject

matter experts that while each SAR event response is dependent on specific condi-
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tions, SAR events within 50 nautical miles of a shoreline for an island with a boat

station are typically responded to using boats and helicopters whereas SAR events

further from shore are responded to using cutters and fixed-wing aircrafts. The is-

lands with USCG boat stations are the Hawaiian islands of Kaua’i, O’ahu, and Maui

as well as the island of Guam. Without using more sophisticated GIS software, an

exact depiction of the 50 nautical mile boundary from shore for each of these four

islands was difficult to ascertain. Instead, an approximation of these boundaries was

made; see Figure 2 for an example of this for the island of O’ahu.

Figure 2. Depiction of the method used to approximate a 50 nautical mile boundary

For each of the applicable islands, circles were drawn in Google Earth Pro from

various shoreline locations around the islands. Each of these circles had a radius of

50 nautical miles and, at a minimum, all the extreme corners of the islands were used

as shoreline reference points. These circles are depicted in red in Figure 2. Once

these rings are placed, an circular approximation of the 50 nautical mile boundary

is drawn, with the center of the circle being approximately the center of the island

and encompassing as much of the red rings as possible while encompassing as little

area beyond the red rings as possible. This approximation is depicted via the yellow
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circle in Figure 2. The determination of adequacy for these approximations are made

visually and did not delve into a set-covering methodology. The resulting reference

points and radii for the circular approximations of each island are shown in Table 3.

Any SAR events within the range of any of the approximations were designated as

boat events and all other SAR events were designated as cutter events.

Table 3. Circular approximations of the 50 nautical mile boundaries

Island Center Radius

Kaua’i 22◦03′24.40′′N, 159◦29′23.89′′W 61.86
O’ahu 23◦26′12.16′′N, 157◦58′51.40′′W 65.95
Maui 20◦45′49.78′′N, 156◦20′54.46′′W 71.28
Guam 13◦26′43.64′′N, 144◦45′11.87′′E 61.56

To subset the data points into manageable groups, hierarchical clusters were de-

veloped using a k -Means approach. All SAR cases were first sorted into four cat-

egories: (1) Sector Guam Boat Events, (2) Sector Guam Cutter Events, (3) Sector

Honolulu/D14 Headquarters Boat Events, and (4) Sector Honolulu/D14 Headquar-

ters Cutter Events. These categories were used to provide usable results to D14 to the

fidelity of both what assets are dispatched and which SAR team will be coordinating

the responses. Sector Honolulu and D14 Headquarters were combined as there was a

significant level of overlap between the two areas of operation. The locations of the

SAR events were placed on a two-dimensional Cartesian plane using their respective

longitude and latitude coordinates as x - and y-coordinates, respectively. While this

representation is not equivalent to the geometry along the surface of the Earth, an

assumption was made that coordinates that are clustered together in a Euclidean

space would be clustered together on the surface of the a sphere. This assumption

was supported by running the same clustering procedures on the three-dimensional

(x, y, z)-Cartesian coordinates obtained using Equations (11) - (13) and obtaining

similar results. It was noted that the antimeridian runs through D14’s AOR, result-

ing in a numbering convention for which SAR events occurring to the east of the
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antimeridian (i.e., nearest Hawaii and the United States) are designated with nega-

tive longitudinal values while events occurring to the west of the antimeridian (i.e.,

nearest Guam and Asia) are designated with positive longitudinal values. To account

for this, a modification was made to all SAR events west of the antimeridian: for each

event, the distance from 180◦ was calculated and then subtracted from -180. This

modification maintains the relative Euclidean distance between all data points.

To determine the number of clusters within each of the four categories, a series of

elbow curves were generated in Python. Clustering methodologies seek to strike a bal-

ance between using enough clusters to account for the preponderance of the variance

but not so many clusters as to defeat the purpose of grouping data points. Elbow

Curves provide insights by plotting a comparison between the percentage of variance

in the dataset accounted for as the number of clusters is increased. The general trend

of Elbow Curves is based on the tendency for initial clusters to correspond with large

leaps in variance explanation, but eventually the curve begins to level out as each

additional cluster explains less variance. The key is to find the elbow of the curve,

i.e., the last added cluster before the curve begins to level out; the elbow corresponds

to a recommended initial number of clusters.

Using the number of clusters recommended by the Elbow Curve, the clusters were

identified using the the KMeans tool in Python using the the scikit learn package. A

k -Means clustering approach starts with k randomly selected centroid locations and

iteratively maneuvers the centroids until they are at locations within k groupings of

data points such that the total within-cluster variation is minimized. This method-

ology labels all data points in the set as belonging to one of the k clusters, and the

clusters are generated using squared Euclidean distances [26]. A noted limitation of

the k -Means approach is the sensitivity based on selection of starting centroid loca-

tions; ill-selected starting locations can lead to poor clustering results. A solution
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proposed by Arthur and Vassilvitskii [27] is the k -Means++ approach, wherein the

initial centroid point is randomly selected and subsequent centroid points are selected

with a probability that is a function of the shortest distance between the proposed

center point and previously selected center points. Once the k initial center points

are selected, the traditional k -Means procedure is implemented to cluster the data

points. The k -Means++ method of selecting initial center points was utilized for the

clustering in this thesis.

Executing this clustering procedure, 15 clusters were generated. Of these 15 clus-

ters, six were clusters of boat events (two surrounding Guam and four surrounding

the Hawaiian Islands), and nine were clusters of cutter events (three within Sector

Guam’s AOR and six within Sector Honolulu/D14 Headquarter’s AOR). A geograph-

ical approximation of these clusters expanded to fit the D14 AOR is depicted in Figure

3.

Figure 3. Geographical approximation of the 15 generated SAR event clusters
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3.3 Research Question 1: Regression Analysis

3.3.1 Autocorrelation and Seasonality

During early discussions with subject matter experts, they hypothesized that there

would be notable levels of seasonality present in the SAR data. The trend for SAR

events to fluctuate based on seasonality has also been observed in previous research.

For example, Afshartous et al. [13] found that there was notable fluctuation in the

levels of distress calls for USCG District 7 (headquartered in Miami, Florida) be-

tween the months of April through August and September through March. Given

the precedent for this trend, seasonality was one of the first aspects of the dataset

examined.

The determination of whether the SAR dataset exhibited statistically significant

levels of seasonality was made by examining autocorrelation function plots generated

using the time series analysis functions within JMP. An autocorrelation plot, also

known as a correlogram, depicts the correlation between data at a given moment in

time and the data at a lagged moment in time. The one axis of an autocorrelation

plot reflects the level of correlation among the data, ranging from -1 to 1, while the

other axis indicates the varying amounts of lag-time between the compared data. The

autocorrelation for a lag-time k is given by Equation (15), where yt represents the

number of SAR events at time t. An autocorrelation near |rk| ≈ 1 is representative

of a larger relationship, whereas an autocorrelation near 0 is indicative of little to

no relationship between the data. In particular, the existence of recurring annual

levels of seasonality would result in larger levels of autocorrelation near lag-times in

increments of 12.

rk =

∑N
t=k+1(yt − ȳ)(yt−k − ȳ)

(yt − ȳ)2
(15)
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The autocorrelation plots were reviewed and the autocorrelations at lag-times of

12- and 24-months are shown in Table 4. For each SAR event clusters and as a whole,

the autocorrelation levels resided within the confidence bands near zero, with only the

following clusters exhibiting |rk| > 0.1 for 12-month lag times: Hawaii-3, Hawaii-4,

Hawaii-5, Guam-8, and Hawaii-9. There was not evidence of statistically significant

levels of a relationship between the levels of SAR activity for any given month each

year; this would be indicative of a lack of seasonality within the SAR dataset for D14.

Table 4. Autocorrelations for each cluster at 12-month and 24-month lag times

Lag Time

Cluster Designation 12 Month 24 Month

Guam-0 0.0284 -0.0506
Guam-1 0.0873 -0.0679
Hawaii-2 0.0957 -0.0561
Hawaii-3 -0.2557 -0.0172
Hawaii-4 0.1302 0.0377
Hawaii-5 -0.1089 -0.2341
Guam-6 0.0092 0.1627
Guam-7 -0.0548 -0.1102
Guam-8 -0.1302 0.0589
Hawaii-9 0.1122 -0.0357
Hawaii-10 -0.0332 -0.0327
Hawaii-11 0.0331 -0.0074
Hawaii-12 -0.0232 -0.1070
Hawaii-13 -0.0219 -0.0462
Hawaii-14 -0.0519 0.2372

All Clusters 0.0808 -0.0940

The results from the autocorrelation analysis were verified via a visual inspec-

tion of the monthly SAR trends, shown in Figure 4. In this figure, the clusters are

delineated by color and overlaid for sake of comparison. The dots represent individ-

ual months corresponding with the respective level of SAR activity. The solid lines

represent the overall seasonal trends for each cluster, generated using the Smoother

function in JMP’s Graph Builder application. The smoother tool generates a cubic

spline to represent the general trends of a dataset, as a function of a flexibility pa-
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rameter λ. When λ = 0, the trend line is provided enough flexibility to intercept

the mean number of SAR events each month and as λ is incrementally increased,

the resulting curve stiffened into a straight line. The default setting in JMP are for

λ = 0.5, and these were maintained when generating Figure 4 as to allow enough

flexibility to illustrating changing trends each month without being so flexible as to

be overly susceptible to the effects of noise.

Figure 4. Comparison of the monthly SAR trends, by cluster

With the exception of cluster Hawaii-4, the trend lines were relatively flat from

month to month. While there may be some curvature throughout the average year,

these deviation were typically on the order of one or two SAR events. These findings

were consistent with the autocorrelations from Table 4. This lack of seasonality was

not observed for cluster Hawaii-4, which encompasses the island of O’ahu. The trend

for SAR levels in this cluster was for the number of events to spike in July and

dip in the winter months. This trend was further revealed in the month-by-month

summary of the SAR levels within this cluster, shown in Table 5. In this table, the

average number of SAR events for each month is shown along with the upper and
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lower 95% thresholds for the mean. This trend did not appear to be consistent within

the data from year-to-year, due to the relatively large variability in SAR frequencies

(particularly in January, May, and September) and therefore was not detected during

the autocorrelation analysis. Therefore, there did appear to be underlying seasonal

trends in SAR activity around the coast of O’ahu during the summer months, though

the actual levels of events varied significantly from year to year.

Table 5. Distribution of monthly SAR levels for cluster Hawaii-4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Upper 15.1 16.3 13.5 16.6 20.3 14.6 22.5 16.3 18.7 13.7 13.1 13.9
Mean 10.8 13.3 11.1 13.8 14.9 12.6 19.0 14.0 14.0 10.9 10.9 11.6
Lower 6.5 10.2 8.8 10.9 9.5 10.5 15.5 11.7 9.3 8.1 8.6 9.4

The homogeneity of SAR rates within the clusters was evaluated by plotting his-

tograms of event frequencies with the Distribution application in JMP and fitting

applicable probability distributions to the plots. The previously noted fluctuations in

SAR rates for each cluster were factored into the analysis of the histograms, and the

Pearsons chi-squared test was applied to evaluate the goodness-of-fit for the chosen

distributions. A more complete discussion of this process is provided in Section 3.4.1.

3.3.2 Explanatory Variable Analysis

Having considered the trends (or lack thereof) within the time-series SAR data

for each cluster, information regarding potential SAR workload drivers was collected

from The State of Hawaii Data Book 2017 and the National Oceanic and Atmo-

spheric Association’s (NOAA’s) National Weather Service Forecast Office. The fol-

lowing analysis was confined to activity surrounding the Hawaiian Islands due to the

availability of data and the proportion of SAR events off the coast of the Hawaiian

Islands compared to the rest of the AOR; the totality of SAR incidents within 50

nautical miles of the Hawaiian Islands accounts for 54.3% of all cases for D14 from
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December 2010 to May 2018.

From The State of Hawaii Data Book 2017, information regarding the monthly

tourism rates was collected; specifically, the number of visitors to each of the six

largest Hawaiian Islands (i.e., O’ahu, Kaua’i, Maui, Moloka’i, Lana’i, and Hawaii),

the number of cruise ship passengers, and the number of cruise ship arrivals to the

Hawaiian Islands as reported by the Hawaii Tourism Authority for January 2011 to

December 2015. These factors were chosen as it was hypothesized that increases

in tourism rates would correspond to increased activity in the waters surrounding

the Hawaiian Islands and thus increase the level of mishaps in the water. Annual

data regarding the number of maritime vessels registered in Hawaii, the number of

commercial fisherman, and the level of commercial fishing were also gathered, but

it was determined that there were not enough years of data within the scope of the

study to draw reasonable conclusions from based on annual metrics. From NOAA’s

National Weather Service Forecast Office, the average monthly temperature and total

monthly precipitation in the Honolulu, HI area was collected. Only weather data for

Honolulu (and thus, Oahu) was collected as it was the only region to display visible

seasonal trends.

To check for any trends within the tourism time-series data, the same tests for

seasonality described in Section 3.3.1. were conducted. The autocorrelation values

for 12- and 24-month lag time are displayed in Table 6, and significant levels are

autocorrelation are found in most of the measures. While Moloka’i and Lana’i tourism

rates and precipication rates exhibit low-levels of relationship at 12- and 24-month

lag times, the other seven measures all have |rk|-values exceeding 0.5 at 12-month

lag times and most exceed 0.4 at 24-month lag times. Time-series plots of these

variables reveal consistent seasonal trends in tourism rates to the main Hawaiian

Islands: visitors levels for O’ahu, Kaua’i, Maui, and Hawaii tend to spike in the
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summer months and dip in the winter months. Conversely, cruise ship activity tends

to spike in the winter months and dip in the summer months.

Table 6. Autocorrelations for each factor for 12-month and 24-month lag times

Lag Time

Tourism Variable 12 Month 24 Month

O’ahu Visitors 0.5640 0.3204
Kaua’i Visitors 0.6216 0.4066
Maui Visitors 0.6228 0.4153

Moloka’i Visitors 0.1906 0.0158
Lana’i Visitors 0.1265 0.0510
Hawaii Visitors 0.6110 0.4604

Cruise Ship Passengers 0.6367 0.3874
Number of Cruise Ships 0.6087 0.4040

Average Temperature (Honolulu) 0.6956 0.4822
Monthly Precipitation (Honolulu) -0.0281 -0.0209

Prior to conducting any correlation and regression analysis using the SAR data,

the tourism data was evaluated for correlation between the variables. Attempting

to construct a model without consideration of variable correlation can lead to mul-

ticollinearity within the subsequent model, which in turn can skew the results and

lead to erroneous conclusions. The correlation matrix for the tourism variables is

displayed in Table 7. From this, we note that the tourism levels for O’ahu, Kaua’i,

Maui, and Hawaii (Big Island) are strongly correlated. Likewise, the number of cruise

ship passengers is strongly correlated to the number of cruise ships arriving to the

Hawaiian Islands. It is also noted that tourism to O’ahu, Kaua’i, Maui, and Hawaii is

negatively correlated to cruise ship activity, which is consistent to the previously dis-

cussed seasonal trends for these variables. Similarly, tourism to the Hawaiian islands

is negatively correlated to precipitation levels.
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Table 7. Correlation matrix of external factors

O’ahu Kaua’i Maui Moloka’i Lana’i Hawaii Pass. Ships Temp. Precip.

O’ahu 1.00 0.89 0.81 0.28 -0.15 0.74 -0.48 -0.52 0.33 -0.05
Kaua’i 0.89 1.00 0.87 0.29 0.01 0.78 -0.51 -0.55 0.24 -0.15
Maui 0.81 0.87 1.00 0.51 0.10 0.91 -0.32 -0.34 -0.08 0.00

Moloka’i 0.28 0.29 0.51 1.00 0.42 0.51 -0.01 0.05 -0.29 -0.02
Lana’i -0.15 0.01 0.10 0.42 1.00 0.18 0.05 0.09 -0.38 -0.17
Hawaii 0.74 0.78 0.91 0.51 0.18 1.00 -0.27 -0.26 -0.20 -0.05
Pass. -0.48 -0.51 -0.32 -0.01 0.05 -0.27 1.00 0.96 -0.45 0.10
Ships -0.51 -0.55 -0.34 0.05 0.09 -0.26 0.96 1.00 -0.50 0.07
Temp. 0.33 0.24 -0.08 -0.29 -0.38 -0.20 -0.45 -0.50 1.00 -0.01
Precip. -0.05 -0.15 0.00 -0.02 -0.17 -0.05 0.10 0.07 -0.01 1.00

To avoid infusing multicollinearity into any subsequent models, only O’ahu tourism,

Moloka’i tourism, Lana’i tourism, number of cruise ship passengers, average temper-

ature, and precipitation levels were utilized to construct regression models. Of the

four boat-event clusters encompassing the Hawaiian Islands, only Hawaii-4 was able

to have a statistically significant model fit to its time-series data. This result is rea-

sonable because most of the external variables showed evidence of seasonality while

only the events in Hawaii-4 exhibited seasonality. The linear regression model for

SAR activity in Hawaii-4 is shown in Equation (16).

ŷH−4 = 5.5175 + (3.7557× 10−5)xO′ahu− 0.8417xPrecip− (1.453× 10−3)xMoloka′i (16)

In this model, only the levels of O’ahu tourism, Moloka’i tourism, and precipitation

were statistically significant to explaining the variability in SAR events for the cluster

over the year. In particular, the SAR events tended to increase as more tourists visit

O’ahu and decrease as O’ahu experiences more rain; these relationships make sense

from a logical standpoint. The SAR rates tended to decrease as more tourists visit

Moloka’i, which seems less intuitive. While the team speculated as to the nature of

this relationship, no definitive explanations were reached. The model has an R2 =

0.2908 and an R2
Adj = 0.2528, suggesting that the model explains approximately
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29.08% of the variability in the dataset. The analysis of variance (ANOVA) for this

model is displayed in Table 8. Additionally, residual analysis supports the normality

assumption, and the assumption of constant variance that underpins this model.

Table 8. Analysis of Variance for First Regression Model

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 3 303.2617 101.087 7.6541 0.0002
O’ahu Tourism 1 146.1729 146.1729 11.0679 0.0016
Precipitation 1 106.3119 106.3119 8.0497 0.0063

Moloka’i Tourism 1 89.6500 89.6500 6.7881 0.0117
Error 56 739.5883 13.207

C. Total 59 1042.8500

When we considered that the preponderance of the seasonal deviation for cluster

Hawaii-4 occurred during the summer months, a regression model was constructed of

only time-series data for June through August to explain this deviation. The resulting

linear regression model is shown in Equation (17).

ŷH−4,Summer = −12.0935 + (5.8816× 10−5)xO′ahu (17)

In this model, only the level of O’ahu tourism is statistically significant in ex-

plaining the variability in SAR activity for the summer months in the cluster and the

rate of SAR activity tends to increase as more the tourism rates to O’ahu increase.

This model has an R2 = 0.2769, suggesting that it explains approximately 27.69% of

the variability in the dataset. The ANOVA for this model is displayed in Table 9.

Residual analysis showed that the residuals are normally distributed, supporting the

normality assumption of the model. Plotting the studentized residuals as a function

of time, we observed that there is a recurring tendency for July to exceed the pre-

dicted SAR level and the data from 2015 appears to deviate notably from the trends

in variance. Specifically, the months of June and August observed fewer incidents

32



www.manaraa.com

than predicted and while the month of July observed more events than predicted by

the model, this deviation from the predicted level was a sharp decline from those of

the previous two years.

Table 9. Analysis of Variance for Second Regression Model

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 1 73.9064 73.9064 4.9775 0.0439
Error 13 193.0270 14.8482

C. Total 24 266.9333

As a means of understanding what could cause the deviations observed in 2015, we

looked for historical events from that year which might provide insight. In a media

advisory from NOAA dated 18 Dec 2015 [28], the agency explained how the 2015

was a record year for the volume and magnitude of tropical storms in the Pacific

Region. There were 15 tropical storms in the year, eight of which occurred during

the June - August timeframe. NOAA noted that, while none of these storms directly

hit the main Hawaiian Islands, there was an increase in heavy rain and high surf. We

speculated that the threat of tropical storms may have played a role in the maritime

activity of people on and around the Hawaiian Islands, deterring people from activities

that would take them out on the water and place them in a position of increased risk.

Given the exceptional nature of 2015 in relation to tropical storms, we removed the

2015 data from the dataset and refit the model for Hawaii-4’s summer months. The

resulting linear regression model is shown Equation (18).

ŷH−4,Summer = −20.2590 + (7.8837× 10−5)xO′ahu (18)

This model has an R2 = 0.5040, suggesting that it explains approximately 50.40%

of the variability in the dataset. For the seasonal spike in SAR activity for Hawaii-

4, this model explains more than half of the variability and indicates that O’ahu
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tourism levels can provide a reasonable indication for the expected level of activity.

The ANOVA for this model is displayed in Table 10.

Table 10. Analysis of Variance for Third Regression Model

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 1 98.9195 98.9195 10.1632 0.0097
Error 10 97.3306 9.7331

C. Total 11 196.2500

While we feel justified in our rationale for only considering the summer months

of 2011-2014, we acknowledge this is a constrained model built using 12 data points

(i.e., June, July, and August data over four years). Therefore, we recommend the

consideration of future data as more O’ahu tourism values become available.

3.4 Research Question 2: Spatiotemporal Forecasting

3.4.1 Stochastic Zonal Distribution Model

Having constructed a model that can be used to inform the prediction of SAR

events from June through August for cluster Hawaii-4, we now move to the construc-

tion of a stochastic model for predicting the location and demand level of SAR events

when external explanatory variables are unavailable for prediction. This model is an

improvement upon the zonal distribution model developed in previous research on

this subject, and we deemed our variation the stochastic zonal distribution model.

The output of the stochastic zonal distribution model is a collection of coordinates

that represent the center of SAR operations for each cluster, with respect to the

varying magnitudes of events, coupled with a probabilistic model of the SAR demand

levels for each cluster.

The zonal distribution model established by Azofra et al. [14] utilizes “superacci-

dent” sites to represent an aggregation of SAR events within a zone of interest. The
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original model computes the location of these superaccidents by calculating the arith-

metic mean of the longitudes and latitudes for all events within the respective zones.

The research conducted by Razi and Karatas [15] utilized the concept of superacci-

dent sites, but noted that the original model failed to account for varying weights of

events. To resolve this shortcoming, they implemented a weighted k-Means cluster-

ing algorithm to incorporate the distinction between event magnitudes into the zonal

grouping of SAR incidents. While this algorithm results in a weighted centroid, it en-

ables the magnitude of events rather than merely the location of events to factor into

the geographic clustering of SAR incidents, resulting in SAR regions that are biased

by event magnitude. This research seeks to improve upon this by generating zone

outlines without consideration of event magnitude, and then computing a weighted

centroid location within each zone for the respective superaccidents. As noted in

Section 3.2, these zones were generated using a k -means++ method on historic data

categorized by both the types of assets used to respond to the emergency and which

SAR team coordinated the response.

To calculate the locations of the superaccidents with respect to weighted SAR

events within the zones, the center of mass equation in two dimensions were imple-

mented; see Equation (19). In this application and for the ith SAR incident, the xi

parameter reflects the longitude/latitude and the wi parameter reflects the magni-

tude. For this research, the magnitude of a SAR event is based upon the total number

of activities associated with the case. For USCG SAR operations, a case is created

in the MISLE database, unique to each SAR event. Within the case, updates are

made in the form of activities. An activity is created for each resource sortie assigned

to the case or whenever the nature of a case has changed and needs to be recorded

in MISLE. The number of sorties per case vary from 0 to 83, with the average of

1.369 sorties/case for the 3949 cases within the dataset. Every SAR case also has an
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Incident Management Activity (IMA), which contains the summary of incident that

is updated throughout the operation. It should be noted that for 181 cases within the

dataset, more than one IMA existed in the SAR case; the number of IMAs in these

instances ranged from 2 - 7. The total number of activities was concluded to be an

appropriate measure of SAR event magnitude, based upon the assumption that SAR

events which are larger in scale are inclined to have more resources assigned to cover

associated operations, and thus result in more activities within MISLE.

xcm =
1

M

∑
i

mixi =
m1x1 +m2x2 +m3x3 + · · ·

m1 +m2 +m3 + · · ·
(19)

Utilizing Equation (19), the weighted centroids of each cluster were computed

and these locations were designated as superaccident sites. To quantify the impact

of this approach, these coordinates are displayed in Table 30 with the corresponding

unweighted centroid of each cluster, along with the distance between each point. The

unweighted centroids were computed by implementing Equation (19) with mi = 1 for

all SAR events, which is effectively the same as averaging the longitudes and latitudes.

From Table 30, we observed the intuitive result that the larger SAR regions (i.e.,

“cutter event regions”) experience a larger shift in the centroid by weighting the

events. To consider why this is the case, we compared the trends in total number

of activities between boat event clusters and cutter event clusters; the results of this

comparison are shown in Table 11. We noted that larger proportions of cutter events

had only one activity in the case records, whereas larger proportions of boat events

had 2 - 4 activities in the case records. As we did not see a consistent tendency for

the cutter events to have more activities per case, we believe that the greater shift in

centroid by weighting can be attributed to the larger geographic area of the cutter

event clusters.
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Table 11. Total number of activities per SAR event, by cluster category

Total Number of Activities

Cluster Type 1 2 3 4 5 6 7 8+

Guam Boat Events 14.7% 62.8% 12.0% 6.8% 1.9% 0.3% 0.2% 1.2%
Hawaii Boat Events 24.6% 37.5% 21.4% 7.7% 3.0% 0.9% 0.7% 4.2%
Guam Cutter Events 43.6% 34.8% 10.1% 3.7% 4.9% 0.9% 0.9% 5.5%
Hawaii Cutter Events 37.1% 39.4% 11.3% 4.0% 2.1% 1.5% 1.3% 3.3%

Having identified the location for each superaccident site, the frequencies of SAR

events for each site were determined. Based on the unscheduled nature of SAR events,

this stage of the problem was deemed to be inherently stochastic. Therefore, the first

step in solving this research question was to identify probabilistic distribution func-

tions that could effective model the emergence of SAR events over time. Reviewing

the works of Afshartous et al. [13] and Akbari et al. [12], both teams approached the

problem of locating search and rescue assets using simulation-based methods with an

assumption of Poisson-distributed SAR events. As such, we hypothesized that the

D14 SAR data would also be Poisson-distributed.

Utilizing the Distribution application in JMP, Poisson distributions were con-

structed for the monthly time-series data in each of the clusters and a Pearson’s chi-

squared test was applied to evaluate the goodness-of-fit. The parameter estimates

and corresponding goodness-of-fit p-values are displayed in Table 31. Note that when

fitting probability distributions to data sets, large p-values are indicative of a good

fit whereas small p-values are indicative of a poor fit [29]. Whereas the majority of

these tests indicated that SAR activity within the clusters was Poisson distributed,

this result did not hold true for all clusters. To understand why, we considered the

assumptions of the Poisson distribution and compared the problematic clusters to

these assumptions.

First, it was established that the emergence of SAR events could be classified as

a counting process. The number of SAR events that have occurred within a specific
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cluster at time t, N(t), is an nonnegative integer-value that monotonically increases

as t→∞. Additionally, the counting process requires that for two moments in time

where time s < t, the number of SAR events that occur within the time interval (s, t]

is N(t)−N(s). For example, the number of SAR events to occur within the interval

month 5 and month 10 is equal to the total number of events to have occurred by

month 10 minus the total number of events to have occurred by month 5: N(10) −

N(5). Having accepted the emergence of SAR events as a counting process, it was

then reviewed against the requirements for a Poisson process [30]:

1. N(0) = 0

2. P{N(h) = 1} = λh+ o(h)

3. P{N(h) ≥ 2} = o(h)

4. The process has independent and stationary increments.

The first requirement stipulates that, from the moment that SAR events begin to

be counted, the count is initialized at zero. In this case, the count of SAR events in

a given cluster was initialized at zero prior to considering events that have occurred

after December 2010. The second requirement states that the probability of a single

SAR event occurring during an incrementally small step in time, h, is essentially equal

to the rate at which SAR events in the cluster occur, λ, multiplied by the duration of

the incremental time step. The third requirement follows the second, establishing that

the probability of two new SAR events occurring within an incrementally small step

in time is especially small. The last requirement requires that the counting process

contains both independent and stationary increments. The emergence of SAR events

in a region are independent as the probability of event A occurring does not impact

the probability of event B occurring, or P (A ∩B) = P (A)P (B).
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Data is said to be stationary if, for any time interval in the series, the distribution

remains the same. This was tested in Section 3.3.1 by examining the autocorrelation

function and time-series plots. From Table 4, we note that all the autocorrelation

levels are fairly close to zero, with only the following clusters exhibiting |rk| > 0.1

for 12-month lag times: Hawaii-3, Hawaii-4, Hawaii-5, Guam-8, and Hawaii-9. Addi-

tionally, the plot of seasonal trends in Figure 4 illustrated relatively flat-line trends

for SAR events throughout the year for most clusters, though some clusters exhib-

ited mild variation in SAR activity and Hawaii-4 notably deviated from this pattern.

From these analyses, we concluded that the preponderance of SAR event cluster data

is stationary though there may be noticeable fluctuation in rate of events for the

aforementioned clusters. We believe that it is due to these non-stationary elements

that not all clusters were shown to be strictly Poisson-distributed.

The method of clustering that was implemented may also have been a culprit for

why we observed non-stationary elements within clusters. As discussed in Section 3.2,

incidents were clustered based on asset type used to respond to the case, which SAR

team was responsible for coordinating the rescue, and the location of these events.

Additionally, it has been shown throughout our time-series analysis that regions differ

in rates of event activity. Therefore, it is plausible that by defining the boundaries of

regions without consideration for the frequency of SAR activity, subsequent clusters

are actually aggregations of smaller regions with varying patterns of rescue operations.

As previously mentioned, this modeling entails a risk to accuracy that is discussed by

Afshartous et al., [13] but it was deemed appropriate for this specific problem given

the geographic size of the AOR.

To circumvent the non-stationary aspects of these clusters, a Gamma-Poisson Dis-

tribution was compared to the monthly time-series data. Gamma-Poisson is a mixture

of the two probability distributions, specifically for models where the count of indi-
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vidual events x is Poisson distributed with a rate λ which is itself Gamma distributed

with parameters α and β. In other words, the count of events x is conditional on

the Poisson parameter λ, and λ is conditional on the Gamma parameters α and β.

The probability function for the Gamma-Poisson Distribution is thus computed by

integrating the product of these conditional distributions [31, 32]:

P (x|α, β) =

∫ ∞
0

POI(x|λ)×GAM(λ|α, β)dλ (20)

=

∫ ∞
0

[
λxe−λ

x!

]
×
[
βα

Γ(α)
λα−1e−βλ

]
dλ (21)

=
Γ(α + x)

Γ(α)Γ(x+ 1)

(
β

1 + β

)α(
1

1 + β

)x
(22)

Utilizing the Distribution application in JMP, Gamma-Poisson distributions were

constructed for the monthly time-series data in each of the clusters and a Pearson’s

chi-squared test was applied to evaluate the goodness-of-fit. The parameter estimates

and corresponding goodness-of-fit p-values are displayed in Table 31. It was found

that modeling the problem with this distribution resulted in better fits for all clusters

with the exception of Hawaii-2 and Hawaii-13. In these clusters, there wasn’t evidence

of variation in λ to a degree that sustained a Gamma-Poisson Distribution; these

clusters are best modeled by a Poisson Distribution.

3.4.2 Monte Carlo Simulation

The previous section described the construction of the stochastic zonal distribu-

tion model for this problem, which represented aggregated geolocation data of varying

magnitudes of a collection of 15 weighted superaccident sites (see Table 30) each with

its own probabilistic distribution of SAR event occurrences (see Table 31). As the

crux of this thesis aimed to build and analyze a collection of deterministic location

models which can provide insight into USCG D14 SAR policies, the stochastic nature
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of this problem had to be represented by singular values. To accomplish this, the

stochastic model was run a large number of times following a Monte Carlo framework

and the resulting descriptive statistics were used as the demand inputs for the deter-

ministic location models. The fact that SAR events are met with different strategies

of response depending on the characteristics of the events added to the complexity

of this task. The following section first describes the analysis into the historical re-

sponse strategies for each cluster, then discusses the conversion of those strategies into

quantifiable response packages, and finally steps through the Monte Carlo simulation

before presenting the results.

Along the initial MISLE dataset of SAR cases and event information for D14 from

December 2010 - May 2018, USCG also provided an accompanying record of the assets

that were dispatched to these events. Assets were logged by ‘resource name’, which

included 1133 uniquely named vessels. Some of these vessels were assets operated by

USCG D14, while the preponderance of the vessels were a combination of military,

commercial, and private boats and aircraft. When notified of an emerging SAR event,

the D14 will consider the unique conditions of the incident and the presence of other

non-USCG vessels in the vicinity of the incident when coordinating a response. As

a result, a substantial number of cases involved the assistance of non-USCG assets.

From an modeling perspective, the presence of these non-USCG assets cannot be

guaranteed when a SAR event occurs but the D14 still has the responsibility to

coordinate the rescue in these cases. Therefore, the interpretation of these vessel

records focused less on the specific assets that participated in the rescue operations

and more on the general strategy of the operations team.

To gain insight into these general strategies of SAR operations, the 1133 uniquely

named vessels were categorized as either aeronautical or maritime assets. For the

USCG assets and some military assets stationed at Joint Base Hickam-Pearl Harbor,
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the resource names were known to the team when this categorization was conducted.

For unknown vessels, many were characterized by information available on industry

web-pages following an internet search. Of these unknown vessels, some did not have

information readily available online as they were presumably either privately owned

or the resource name provided was actually the name of an organization which has

multiple types of assets. For these remaining vessels, the categorization was made

based on naming conventions similar to those that had been identified on industry

web-pages and, when no other information was available, we categorized them as

maritime assets. The determination to categorize the remainder of the resources

as maritime assets is based on the assumption that there is likely a larger number

of privately owned maritime vessels compared to privately owned aircraft, and the

privately owned maritime vessels likely to be used more frequently due to the relative

cost of fuel and ease of use. The nature of this categorization is admittedly a source

of potential error in the subsequent analysis for this thesis, but we proceeded under

the assumption that these classifications provide accurate insight into the general

strategies of SAR operations in each cluster.

Once all resources were classified as either maritime or aeronautical, these re-

sources were then linked to the applicable SAR cases under review using the asso-

ciated Case ID. From the synthesis of these case records, three general strategies

regarding SAR operations emerged: respond with aviation assets only, respond with

maritime assets only, or respond with a combination of maritime and aviation assets.

As previously discussed, there were also a significant number of SAR cases (1182

out of 3949) in which the USCG did not coordinate any assets in response. The

percentages of response type, delineated by cluster, is displayed in Table 12.
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Table 12. Percentage of Response Type, by Cluster

No Aircraft Maritime Maritime &
Cluster Assets Only Only Aircraft

Guam-0 17% 7% 61% 15%
Guam-1 13% 52% 29% 6%
Hawaii-2 20% 11% 54% 15%
Hawaii-3 19% 15% 44% 23%
Hawaii-4 28% 20% 36% 16%
Hawaii-5 44% 25% 7% 23%
Guam-6 32% 16% 38% 14%
Guam-7 48% 1% 47% 4%
Guam-8 54% 5% 28% 13%
Hawaii-9 42% 28% 13% 17%
Hawaii-10 43% 18% 31% 8%
Hawaii-11 57% 4% 32% 7%
Hawaii-12 40% 17% 22% 21%
Hawaii-13 40% 24% 23% 13%
Hawaii-14 40% 18% 30% 12%

Interestingly, the cutter cluster events have the greatest proportion of cases where

no asset is dispatched by USCG to respond. Speaking with a subject matter expert

from the USCG Research and Development Center [33], it was explained this phe-

nomenon is not uncommon and can occur for a number of reasons. The example

provided was that a SAR event has occurred and D14 is notified but, either prior to

the notification, or very soon thereafter, the emergency is resolved without a phys-

ical response coordinated by D14. Once again, as D14 maintains the operational

responsibility of these SAR events, and it cannot be guaranteed these events will be

resolved prior to USCG intervention, these cases remain in the analysis and their

response levels are scaled to represent the totality of SAR response options. These

scaled utilization rates for each strategy is displayed in Table 13, broken down by

cluster.
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Table 13. Percentage of Response Strategy, by Cluster

Aircraft Maritime Maritime &
Cluster Only Only Aircraft

Guam-0 8.642% 73.827% 17.531%
Guam-1 59.524% 33.333% 7.143%
Hawaii-2 13.586% 67.261% 19.154%
Hawaii-3 18.386% 53.812% 27.803%
Hawaii-4 28.066% 50.118% 21.816%
Hawaii-5 44.928% 13.043% 42.029%
Guam-6 23.636% 56.364% 20.000%
Guam-7 1.220% 91.463% 7.317%
Guam-8 11.111% 61.111% 27.778%
Hawaii-9 48.691% 22.513% 28.796%
Hawaii-10 32.000% 54.000% 14.000%
Hawaii-11 9.375% 75.000% 15.625%
Hawaii-12 28.947% 36.842% 34.211%
Hawaii-13 40.000% 37.778% 22.222%
Hawaii-14 30.357% 50.000% 19.643%

Having determined the tendencies for D14 to respond to various SAR events with

these three general strategies, the next question was how many assets are utilized in

the execution of those strategies. To determine this, the frequency of the different

response volumes for SAR events given the chosen strategy were evaluated. Since

the deterministic location models for this thesis only considered the allocation of

USCG assets, the number of aviation assets considered was capped at two and the

number of maritime assets considered was capped at four. If, for instance, an event

was responded to by 6 maritime assets, that would be considered by this analysis

as a four maritime asset case. Tables 14-16 respectively depict the relative rates of

response for each cluster given that the operation uses a ‘maritime only’, ‘aircraft

only’, and ‘maritime & aircraft’ strategies.
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Table 14. Number of Maritime Assets Dispatched, Given ‘Maritime Only’ Strategy

Number of Maritime Assets
Cluster 1 2 3 4

Guam-0 82.609% 14.381% 1.338% 1.672%
Guam-1 92.857% 7.143% 0.000% 0.000%
Hawaii-2 93.377% 5.629% 0.331% 0.662%
Hawaii-3 87.500% 11.667% 0.000% 0.833%
Hawaii-4 83.294% 13.176% 2.588% 0.941%
Hawaii-5 100.000% 0.000% 0.000% 0.000%
Guam-6 81.720% 13.978% 2.151% 2.151%
Guam-7 76.000% 17.333% 2.667% 4.000%
Guam-8 75.000% 20.455% 0.000% 4.545%
Hawaii-9 83.721% 13.953% 0.000% 2.326%
Hawaii-10 92.593% 3.704% 0.000% 3.704%
Hawaii-11 79.167% 20.833% 0.000% 0.000%
Hawaii-12 85.174% 14.286% 0.000% 0.000%
Hawaii-13 94.118% 5.882% 0.000% 0.000%
Hawaii-14 85.714% 7.143% 3.571% 3.571%

Table 16. Number of Maritime and Aeronautical Assets Dispatched, Given ‘Maritime
& Aircraft’ Strategy

Number of (Maritime, Aviation) Assets
Cluster (1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2)

Guam-0 49.296% 1.408% 16.901% 7.042% 7.042% 0.000% 7.042% 11.268%
Guam-1 33.333% 33.333% 33.333% 0.000% 0.000% 0.000% 0.000% 0.000%
Hawaii-2 55.814% 9.302% 16.279% 5.814% 1.163% 4.651% 0.000% 6.977%
Hawaii-3 58.065% 11.290% 6.452% 6.452% 1.613% 1.613% 3.226% 11.290%
Hawaii-4 58.378% 7.568% 9.730% 9.189% 3.243% 0.000% 2.162% 9.730%
Hawaii-5 31.034% 27.586% 10.345% 0.000% 0.000% 6.897% 0.000% 24.138%
Guam-6 45.455% 12.121% 9.091% 3.030% 0.000% 6.061% 6.061% 18.182%
Guam-7 16.667% 0.000% 0.000% 0.000% 0.000% 0.000% 33.333% 50.000%
Guam-8 15.000% 0.000% 0.000% 0.000% 0.000% 10.000% 20.000% 55.000%
Hawaii-9 30.909% 27.273% 14.545% 9.091% 3.636% 1.818% 3.636% 9.091%
Hawaii-10 71.429% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 28.571%
Hawaii-11 40.000% 0.000% 0.000% 20.000% 0.000% 20.000% 0.000% 20.000%
Hawaii-12 23.077% 23.077% 7.692% 0.000% 0.000% 23.077% 15.385% 7.692%
Hawaii-13 40.000% 10.000% 30.000% 20.000% 0.000% 0.000% 0.000% 0.000%
Hawaii-14 27.273% 27.273% 0.000% 0.000% 9.091% 18.182% 0.000% 18.182%

We used the concept of conditional probability to determined the probabilities of

each response option occurring. Consider the general strategy A ∈ [Aircraft Only,

Maritime Only, Maritime & Aircraft] and the operational response B ∈ [(0, 1), (0,

2),..., (4, 1), (4, 2)], presented notationally as (Number of Maritime Assets, Number of
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Table 15. Number of Aeronautical Assets Dispatched, Given ‘Aircraft Only’ Strategy

Number of Aviation Assets
Cluster 1 2

Guam-0 97.143% 2.857%
Guam-1 100.000% 0.000%
Hawaii-2 83.607% 16.393%
Hawaii-3 78.049% 21.951%
Hawaii-4 79.412% 20.588%
Hawaii-5 80.645% 19.355%
Guam-6 97.436% 2.564%
Guam-7 100.000% 0.000%
Guam-8 75.000% 25.000%
Hawaii-9 70.968% 29.032%
Hawaii-10 100.000% 0.000%
Hawaii-11 100.000% 0.000%
Hawaii-12 81.818% 18.182%
Hawaii-13 100.000% 0.000%
Hawaii-14 82.353% 17.647%

Aeronautical Assets). Notice that there is no overlap in the response options available

when using each strategy. That is, the response of (1 Maritime, 0 Aircraft) is exclusive

to the strategy ‘Maritime Only’. Therefore, we can simplify the probability notation:

P (A ∩ B) = P (B). The formula for the conditional probability that a response

occurred is thus

P (B) = P (A ∩B) = P (B|A)P (A). (23)

The conditional probabilities for all possible responses in each cutter was computed

using this method (see Table 32 in Appendix A).

Using the probabilistic rates of SAR event occurrence in Table 31 (as shown

in Appendix A), and the historic percentages of response magnitude in Table 32

(from Appendix A), a Monte Carlo simulation was constructed to determine the

monthly demand for maritime and aviation assets in each cluster. For each cluster,

10,000 months were simulated as follows: the number of SAR events for the cluster
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in a given month was selected based upon the corresponding distribution in Table

31, and then for each event in that month, a SAR response was simulated using

the respective probabilities in Table 32. The resulting 10,000 months of simulated

data were subsequently summarized by descriptive statistics: the mean, standard

deviation, and percentiles (minimum, 25%, 50%, 75%, maximum). The results from

the Monte Carlo simulation are shown in Table 33, also depicted in Appendix A for

an interested reader.

It was noted that there was a seemingly anomalous result from the Monte Carlo

simulation, wherein the number of SAR events at a given percentile does not always

correspond to the number of assets deployed at that same percentile. For example,

Hawaii-10 shows one SAR event at the 50% percentile of months, indicating that

5,000 out of the 10,000 simulated months experienced zero or one SAR events. This

cluster also shows zero maritime assets and zero aviation assets at the 50% percentile

of months, indicating that there were at least 5,000 months where no maritime assets

were deployed and 5,000 months where no aeronautical assets were deployed. This

discrepancy initially seems incongruous.

To understand this phenomenon, consider for a moment five simulated months of

SAR events with the results shown in Table 17. The median (50% percentile) number

of SAR events is 1. Placing the number of maritime assets in ascending order, we

have [0, 0, 0, 1, 2] and find that the median number of deployed maritime assets is 0.

Similarly, the median number of deployed aviation assets is 0. Notice the incongruity

of these results, largely due to the instances when none or only one asset is deployed.

While these results seem odd, they also offer an accurate reflection of this example.

Most of the months required no maritime assets and most of the months required no

aviation assets despite the majority of the months having at least one SAR event.
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Table 17. Hypothetical Simulation Results

Simulated Month 1 2 3 4 5

Nbr SAR Events 0 1 1 2 0

Response Strategy (0, 0) (1, 0) (0, 1) (1, 0) (0, 0)
(1, 0)

Total Strategy (0, 0) (1, 0) (0, 1) (2, 0) (0, 0)

Consider the cluster Hawaii-10. Examining Table 32 in Appendix A, note that

32% of the SAR events in Hawaii-10 are responded to using only one aviation asset

and 50% of the events are responded to using on one maritime asset. Thus, we

expect that the preponderance of events in this cluster will be met with a single

asset, sometimes a cutter and sometimes a fixed-wing aircraft. Amplified over 10,000

simulated months, this leads to the number of months where a specific asset-type was

sent to respond being less than the number of months where a SAR event actually

occurred. While this discrepancy seems to be an artifact of methodology it coincides

with reality experienced by USCG that some events do not require assets to respond.

3.5 Research Question 3: Network Flow

Given a finite number of USCG assets, based at predetermined locations, each

with prescribed mission radii, a set covering approach was used to solve the central

problem of this thesis research. We implemented a number of mixed-integer location

models to conduct a thorough analysis, and the findings of these models are presented

in Chapter 4. This section discusses the formulation of the models, starting with

model assumptions and notation before detailing the specific formulations.

3.5.1 Assumptions

As with any optimization analysis, there were a series of assumptions that under-

pin the formulations which must be considered. The assumptions discussed previously

48



www.manaraa.com

in this chapter continue to apply, such as the belief historical data is indicative of

future trends and the resource data was accurately categorized as either maritime or

aeronautical.

Within the formulations, the time required for an asset to travel was considered as

an operational cost. It was assumed, when assets respond to a SAR event, the asset

travels at its maximum speed. One of the location models considered the possibility

of allowing assets to be repositioned across the Pacific region in anticipation of future

SAR response. As we were unable to quantify the full financial and political cost

associated with establishing a new USCG station at variable locations, we utilized

the travel time for moving an asset to these candidate locations at it’s respective

cruise speeds as a proxy cost.

Every USCG asset has a homeport location when it was not on a mission, and the

location models assumed all assets were at their homeport when a SAR event occurs.

Similarly, these models were limited in consideration to only the SAR mission for D14

and did not include the other USCG statutory missions. Additionally, SAR events

were assumed to not overlap in time as to not constrict the availability of assets

to respond to a given event. These assumptions reflect the scope of this research

considering the location of assets rather than the scheduling of assets.

When evaluating the potential repositioning of assets, it was assumed that all

boats and cutters could utilize the harbors identified as candidate homeports in the

models. Likewise, it was assumed that all fixed wing aircraft and helicopters could

utilize the airports identified as candidate homeports in the models.

It was discussed in Section 3.4.2 how the various strategies were quantified for

each cluster. It was assumed that, for the designated “boat events” (i.e., Guam-0

through Hawaii-5), the maritime assets available for response were 45 Ft Response

Boat - Medium (45’ RB-M) and the aviation assets available for response were H-65s.

49



www.manaraa.com

Conversely, the maritime assets available for response to “cutter events” (i.e., Guam-

6 through Hawaii-14) were 225’ WLBs, 110’ WPB, Fast Response Cutters (FRCs),

and 87’ CPBs while the aviation assets available were C-130Js. In reality, cutters

are able to be used in the response of events within 50 nautical miles of shore, but

boats are restricted to that distance by the operational mission range. Each asset

had an allocated number of hours for SAR operations each month, as determined by

USCG leadership and published in the Operational Planning Direction; this served as

a limiting constraint for each asset. Likewise, only USCG D14 assets were considered

in these models. As has been previously discussed, in practice the SAR operators

identify military, commercial, and private vessels in the vicinity of emergencies when

coordinating their responses to request assistance. However, the presence of these ex-

ternal vessels cannot be guaranteed, and therefore were not considered in the strategic

planning of USCG asset allocations.

3.5.2 Model Notation

Sets:

• N : Set of asset categories, indexed by n.

• M : Set of location categories, indexed by m.

• P : Set of infeasible asset category/location category combinations (n,m), in-

dexed by p.

• Hn: Set of all individual assets within asset category n, indexed by h.

• Im: Set of candidate homeports with coordinates (xi, yi), indexed by i.

• J : Set of superaccident sites with coordinates (xj, yj), indexed by j.
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The location models were indexed on the above sets to consider all assets and

locations. The set of all asset categories were defined as N ∈ {Boat, Cutter, Fixed

Wing, Rotary Wing}. The set of all location categories were defined as M ∈ {Harbor,

Airport}. The set of infeasible asset category/location category combinations were

defines as P ∈ {(Cutter, Airport), (Boat, Airport), (Fixed-Wing, Harbor), (Rotary-

Wing, Harbor)}. The assets of D14 were approximated based on scheduling records

and publicly available information. Similarly, the candidate homeports that com-

prised the set Im were collected by surveying the Pacific region and identifying a wide

array of commercial harbors and airports that span the area. To alleviate issues of

sensitivity, this thesis restricts itself to asset and location data that is publicly avail-

able. Results from this analysis using actual asset and location data was conducted

separately and briefed to D14 leadership. The superaccident sites correspond with

those identified in Table 30 (as shown in Appendix A).

Parameters:

• bh,i: Baseline locations of assets, equalling 1 if asset h ∈ Hn is initially home-

ported at i ∈ Im and 0 otherwise.

• ch,i: Time to reassign asset h ∈ Hn to candidate homeport i ∈ Im.

• dh,i,j: Time to deploy asset h ∈ Hn from candidate homport i ∈ Im to superac-

cident j ∈ J .

• ln,j: Level of demand for asset type Hn ⊆ H at superaccident site j ∈ J .

• uh: Monthly hours allocated for SAR operations for asset h ∈ Hn.

• wk: Weighting of competing objectives, for k ∈ {1, 2} such that
∑

k wk = 1.

• t: Time to complete SAR mission.
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The above parameters provide the characteristics of the assets and locations. The

time to reassign assets ch,i was computed by dividing the distance between current

homeports and candidate homeport i ∈ Im by the cruise speed of asset h ∈ Hn.

The time to deploy assets dh,i,j was computed by dividing the distance between the

candidate homeport i ∈ I and the superaccident site j ∈ J by the maximum speed

of asset h ∈ H. The specifications for various USCG assets were gathered from the

publicly accessible U.S. Coast Guard Addendum to the United States National Search

and Rescue Supplement to the International Aeronautical and Maritime Search and

Rescue Manual [34]. The demand levels for each asset type n ∈ N were those from

the Monte Carlo simulation, shown in Table 33 in Appendix A. The monthly hours

allocated for SAR operations for each asset h ∈ H in this thesis were notional, set at

levels that are indicative in proportion of those from historic standards used by D14

but high enough to ensure the feasibility of the models. The SAR operation mission

length was assumed to be 90 minutes for this modeling effort.

Decision Variables:

• xh,i = 1 if asset h ∈ Hn is assigned to candidate homeport i ∈ Im; xh,i = 0

otherwise.

• yh,i,j: Number of SAR events asset h ∈ Hn, assigned to candidate homeport

i ∈ Im, is poised to respond to at superaccident site j ∈ J .

• g: Total time to reassign assets to new homeports.

• f : Total time to deploy assets to respond to superaccident sites.

The above decision variables represent the decisions available to USCG D14. The

decision xh,i is binary in nature, representing the decision to either assign or not

assign the assets. The decision yh,i,j is a positive integer, representing the number of

instances asset h ∈ Hn is dispatched from i ∈ Im to j ∈ J .
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3.5.3 Model Formulations

To best evaluate the nature of D14 SAR operations, three location models were

constructed and solved.

Multiple Objective Location Problem:

This model considered, given the current assets belonging to D14, where they

should be homeported to both minimize the cost of reassigning assets and minimize

the time to respond to SAR events.

min w1g + w2f, (24)

subject to g =
∑
h∈Hn

∑
i∈Im

ch,ixh,i, ∀ n ∈ N,m ∈M, (25)

f =
∑
h∈Hn

∑
i∈Im

∑
j∈J

dh,i,jyh,i,j , ∀ n ∈ N,m ∈M, (26)

∑
i∈Im

xh,i = 1, ∀ h ∈ Hn, n ∈ N, (27)

∑
i∈Im

∑
h∈Hn

yh,i,j ≥ ln,j , ∀ j ∈ J, n ∈ N,m ∈M, (28)

yh,i,j ≤ 100xh,i, ∀ h ∈ Hn, i ∈ Im, j ∈ J, n ∈ N,m ∈M, (29)

xp = 0, ∀ p ∈ P, (30)

uh ≥
∑
i∈Im

∑
j∈J

(2dh,i,j + t)yh,i,j , ∀ h ∈ Hn, n ∈ N,m ∈M, (31)

xh,i ∈ {0, 1}, ∀ h ∈ Hn, i ∈ Im, n ∈ N,m ∈M, (32)

yh,i,j ∈ Z+, ∀ h ∈ Hn, i ∈ Im, j ∈ J, n ∈ N,m ∈M (33)

The objective function (24) minimizes the weighted sum of the two opposing

objectives: the cost associated with reassigning assets to new homeports and the cost

associated with responding to SAR events. Constraints (25) and (26) calculate the

decision variables g and f used in the objective function. Constraint (27) ensures
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that every asset is assigned to exactly one homeport. Constraint (29) only allows for

assets to be deployed to superaccident sites from specific homeports if the asset is

first assigned to that homeport; an arbitrarily large value of 100 is used, indicating

that assigned assets can respond to at most 100 SAR events for each superaccident

site. Constraint (30) prevents erroneous assignments, such as homeporting a maritime

asset to an airport. Constraint (31) limits the utilization levels of each assets based

on its monthly allocation of operational hours; note that each SAR event consists

of the time to travel to and from the superaccident site as well as the duration of

the mission. Constraint (32) enforces the binary nature of decision variable xh,i and

constraint (33) enforces the positive integer nature of decision variable yh,i,j.

Additional Asset Location Problem:

This model considered where, of their current stations, D14 should assign a new

asset (if they are able to acquire it) to reduce the overall response time for SAR

events.

min
∑
h∈Hn

∑
i∈Im

∑
j∈J

dh,i,jyh,i,j , ∀ n ∈ N,m ∈M, (34)

subject to
∑
i∈Im

xh,i = 1, ∀ h ∈ Hn, n ∈ N,m ∈M, (35)

∑
i∈Im

∑
h∈Hn

yh,i,j ≥ ln,j , ∀ j ∈ J, n ∈ N,m ∈M, (36)

yh,i,j ≤ 100xh,i, ∀ h ∈ Hn, i ∈ Im, j ∈ J, n ∈ N,m ∈M, (37)

xp = 0, ∀ p ∈ P, (38)

uh ≥
∑
i∈Im

∑
j∈J

(2dh,i,j + t)yh,i,j , ∀ h ∈ Hn, n ∈ N,m ∈M, (39)

xh,i ≥ bh,i, ∀ h ∈ Hn, i ∈ Im, n ∈ N,m ∈M, (40)

xh,i ∈ {0, 1}, ∀ h ∈ Hn, i ∈ Im, n ∈ N,m ∈M, (41)

yh,i,j ∈ Z+, ∀ h ∈ Hn, i ∈ Im, j ∈ J, n ∈ N,m ∈M (42)
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This model is very similar to the previous formulation, with a few important

distinctions. First, the locations that comprise set Im are confined to those designated

as current USCG stations (i.e., a handful of harbors and airports on the Hawaiian

Islands and Guam). Second, an additional asset is added to set Hn without assigning

it to an initial homeport; this represents the new asset that is being considered for

inclusion to the D14 inventory. The specifications of this new asset are updated

between model runs to allow for the consideration of different assets being added to

the inventory. The objective function (34) minimizes the total time to respond to SAR

events. The only new constraint (40) forces all current assets in the D14 inventory

to remain at their current homeports. This constraint adhered to the scenario under

consideration, wherein D14 maintains all current assets at their current homeports

while optimizing the assignment of a single, new vessel.

Forward Deployed Asset Location Problem:

This model considered where, across the Pacific region, D14 should forward deploy

a single asset to reduce the total response time for SAR events. The term forward

deploy for this scenario refers to the temporary assignment of a D14 asset to a station

which may not be presently operated by the USCG. This model is identical in for-

mulation to the previous model, but the locations that comprise set Im included all

the commercial harbors and airports across the Pacific region that were considered in

the Multiple Objective Location Problem. Additionally, the initial placement bh,i for

the asset being considered for deployment was set to 0 as to avoid being constricted

by constraint (40). This was updated between each run and the model was solved

iteratively for each asset type.
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3.5.4 Model Implementation

We required an optimization software that could automate the computation of

several complex parameters, specifically that could quickly compute the haversine

distances between all considered locations and then compute the corresponding travel

times for each asset based on vehicle specifications. To achieve this, the optimization

formulations were solved using the General Algebraic Modeling Software (GAMS)

version 25.1.3. The GPS coordinates for the locations and the specifications for the

assets were input directly into a GAMS script, which used a series of equations to

calculate the parameter values before then solving the model formulations. The self-

contained nature of this script also provided ease of use for verifying the accuracy

of the models. These formulations were solved as mixed-integer problems using the

CPLEX solver currently developed by IBM. The default convergence criteria was

overridden using the statement “ModelName.OptCR=0;” at the end of the model to

prevent from premature termination of the search algorithm.
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IV. Analysis

4.1 Notional Scenario

As previously discussed, commercial facilities and approximations of locations

made based on publicly available data were used to develop the notional scenario

that was evaluated in this thesis. The locations considered in this scenario are listed

in Table 34 in Appendix B. The harbors were gathered from a listing of ports across

the Pacific region and the airports were collected from a list of diversion airports

across the Pacific that are available for emergency landings. These locations were

specifically selected due to the degree of coverage they provided for the region. The

intent behind this level of coverage was to illuminate underlying trends in the optimal

dispersion of assets, particularly as they related to the possibility of forward deploying

vessels away from the current USCG stations.

The demand levels for each superaccident site for the notional scenario corre-

sponded with the 50th and 75th percentile results from Table 33 (as shown in Ap-

pendix A). We considered the median demand levels as they provided a representation

of the typical month of SAR operations. The 75th percentile of demand were also

evaluated as this elevated operations tempo provided an effective level of risk manage-

ment for the resulting strategic recommendations from the analysis. The maximum

values from each cluster were not considered in the analysis as it would have lent

undo consideration to the extreme cases for each area.

The assets and corresponding initial locations for the notional scenario are shown

in Table 35 (see Appendix B). These assets and locations were approximated based

on historic schedules provided by D14 as well as publicly available information on

the fleet operations. The corresponding maximum monthly hours of SAR operations

are also provided in the table. These values were chosen to represent the proportions
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of monthly limits for each asset type while being elevated enough to maintain the

feasibility of the models.

The asset specification were pulled from the publicly accessible U.S. Coast Guard

Addendum to the United States National Search and Rescue Supplement to the Inter-

national Aeronautical and Maritime Search and Rescue Manual [34] and are displayed

in Table 36 in Appendix B. The new FRCs are not captured in the Addendum and

the specifications were retrieved from a USCG press release regarding the vessel [35].

The sections that follow in this chapter consider the results of each of the three

location models separately and discusses the associated strategic insights.

4.2 Multiple Objective Location Problem

The first location problem considered the optimal configuration of D14 assets with

two competing objectives: minimize the cost associated with reassigning assets to new

homeports and minimize the cost associated with responding to predicted SAR events.

The cost associated with reassigning assets to new homeports was represented by the

time required for an asset to move from its current location to the proposed homeport

at its cruise speed; this metric is admittedly a relatively minor proxy that was used

due to it’s availability as the financial and political costs associated with establishing

a new USCG station is beyond the scope of this study. An additional benefit to

this selection is that it is scaled the same as the response time and thus does not

require normalization. The cost associated with responding to predicted SAR events

was represented by the time required for an asset to travel to a superaccident site

from its assigned homeport; this cost does not consider the duration of each SAR

mission or the time to commute back from the superaccident site, though both of

these values are considered in the model formulation as they related to the monthly

mission capacity of each asset.
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A weighted goal programming approach was used to consider these objectives

simultaneously. That is, the objective function of the model is a weighted summation

of the two costs such that the weights on each cost are restricted to 0 ≤ wi ≤ 1 and

the weights sum to 1. The model was then solved multiple times, iteratively changing

the weights between each run. The result was a collection of solutions that span the

continuum of weighting combinations, which are depicted on a scatter plot to allow

for further analysis. From these solutions, the Pareto frontier of efficient solutions

was identified. An efficient solution is one that is at least as good or better than all

other possible solutions. Conversely, a solution is considered to be dominated and

not along the Pareto frontier if it is strictly worse than any other solution in the set;

dominated solutions are typically removed from further consideration. A plot of the

Pareto frontier allows for the visualization of the Pareto-optimal solutions that could

be considered by a decision maker along with the corresponding trade-offs between

these decisions.

For both the 50th and 75th percentiles of SAR demand, additional consideration

was given to the solutions at each extreme of the frontier as well as the solution

which yielded the lowest unweighted sum of costs. At one end of the frontier is the

solution which displayed the optimal posture of D14 assets across the Pacific region

that minimized response times for SAR events, without any allegiance to the current

homeport locations; this solution was academically interesting but of lesser practical

value to the USCG. At the other end of the frontier is the solution that minimized

the response time for SAR events while restricting assets to their current homeports;

this solution was of practical interest for SAR operations. The solution along the

frontier with the minimum unweighted sum of costs served as an intermediary between

these two extremes. Considered as a whole, these results show both the current

optimal response given current asset assignments as well as strategic trends for further
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advancement should the USCG seek to expand its stationary presence throughout the

AOR.

4.2.1 50th Percentile Demand

The Pareto frontier for the solutions associated with the 50th percentile demand

level are shown in Figure 5. After iteratively adjusting the weighting values between

each run and comparing the solutions to each other, no dominated solutions were

identified. From the visualization of the frontier, the trade-off between the competing

objectives became clear: when no allegiance to the current homeports is considered,

the response time to anticipated SAR levels was shown to reduce by approximately

67%. This reduction requires a significant redistribution of assets, specifically the

reassignment of a 110’ WPB, all three FRCs, all aircraft, and three 45’ RB-Ms.

Figure 5. Pareto Frontier for 50th Percentile of Demand Level

The specific results of three solutions along the pareto frontier were considered

further. Table 18 depicts the optimal posturing of the assets that minimizes the

response time for SAR events when D14 is not granted the flexibility of reassigning

assets to new homeports (i.e., wReassign = 0.99995 and wRespond = 0.00005). This
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solution resulted in a total response time of 118.950 hours. Under this configuration,

the preponderance of the cutter event workload was covered by the 110’ WPB vessels

in Guam and one FRC based at Honolulu Harbor. The boat events were covered by

the respective boat stations and the aircraft were assigned to events based on whether

Sector Guam or Sector Honolulu/D14 Headquarters is coordinating the response.

Table 18. Results for 50th Percentile Demand, No Reassignment

Asset Homeport Superaccident Sites

Cutter

225’ WLB Honolulu Harbor –
225’ WLB Apra Harbor –
110’ WPB Apra Harbor Guam-6, Guam-8
110’ WPB Apra Harbor Guam-7, Guam-8

FRC Honolulu Harbor –
FRC Honolulu Harbor Hawaii-9
FRC Honolulu Harbor –

87’ CPB Honolulu Harbor –
87’ CPB Honolulu Harbor –

Boat

45’ RB-M Honolulu Harbor Hawaii-4
45’ RB-M Honolulu Harbor Hawaii-4
45’ RB-M Kahului Harbor Hawaii-2, Hawaii-5
45’ RB-M Kahului Harbor Hawaii-2, Hawaii-5
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Apra Harbor Guam-0
45’ RB-M Apra Harbor Guam-0

Fixed Wing
C-130J Lihue Airport Hawaii-9
C-130J Antonio B Won Pat Guam-6

Rotary Wing
H-65 Lihue Airport Hawaii-2 to Hawaii-5
H-65 Antonio B Won Pat Guam-0

Allowing for more flexibility in reassigning assets, the solution that yielded the

minimum unweighted sum of costs was examined (i.e., wReassign = 0.50 and wRespond =

0.50). Table 19 depicts the optimal posturing of the assets that corresponds with

these weightings, which resulted in a total response time of 109.892 hours. When the

possibility for moderate reassignment was allowed, the respective optimal solutions

shifted one of the FRCs to the Hawaiian Island of Lana’i, moved the aircraft on the

Hawaiian Islands to Maui, and shifted the workload for the boats in zone Hawaii-4
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to Pearl Harbor. Under this configuration, the preponderance of the cutter event

workload was still covered by the 110’ WPB vessels. The boat events were covered by

the respective boat stations and the aircraft were assigned to events based on whether

Sector Guam or Sector Honolulu/D14 Headquarters is coordinating the response.

Table 19. Results for 50th Percentile Demand, Moderate Reassignment

Asset Homeport Superaccident Sites

Cutter

225’ WLB Honolulu Harbor –
225’ WLB Apra Harbor –
110’ WPB Apra Harbor Guam-6, Guam-8
110’ WPB Apra Harbor Guam-7

FRC Honolulu Harbor –
FRC Kaumalapau Harbor Hawaii-9
FRC Honolulu Harbor –

87’ CPB Honolulu Harbor –
87’ CPB Honolulu Harbor –

Boat

45’ RB-M Honolulu Harbor –
45’ RB-M Pearl Harbor Hawaii-4
45’ RB-M Kahului Harbor Hawaii-5
45’ RB-M Lahaina Harbor Hawaii-2
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Apra Harbor Guam-0
45’ RB-M Apra Harbor Guam-0

Fixed Wing
C-130J Kahului Airport Hawaii-9
C-130J Antonio B Won Pat Guam-6

Rotary Wing
H-65 Kahului Airport Hawaii-2 to Hawaii-5
H-65 Antonio B Won Pat Guam-0

The solution for the optimal configuration of D14 assets across the Pacific region

without enforced adherance to the current homeports (i.e., wReassign = 0.00005 and

wRespond = 0.99995) is displayed in Table 20. This solution reduced the anticipated

response time to 38.950 hours. Having allowed for the assets to move relatively

uninhibited across the AOR, it was noted that the majority of the assets retained

their initial homeports. Two FRCs were spread across the region, taking over much

of the workload for Sector Guam. The third FRC was stationed on the big island of

Hawai’i, as was the C-130J aircraft for the Hawaiian Islands. The boat events were
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still handled by their respective stations, though the two boats initially stationed on

the northern side of Maui were dispersed; one boat moved to the western side of Maui

to handle the events in zone Hawaii-2 while the other boat moved to the western side

of the big island of Hawai’i to handle events in zone Hawaii-5.

Table 20. Results for 50th Percentile Demand, Maximum Reassignment

Asset Homeport Superaccident Sites

Cutter

225’ WLB Honolulu Harbor –
225’ WLB Apra Harbor –
110’ WPB Apra Harbor –
110’ WPB Port of Tinian Guam-6

FRC Tomil Harbor Guam-7
FRC Pohnpei Harbor Guam-8
FRC Port of Kailua Kona Hawaii-9

87’ CPB Honolulu Harbor –
87’ CPB Honolulu Harbor –

Boat

45’ RB-M Honolulu Harbor –
45’ RB-M Pearl Harbor Hawaii-4
45’ RB-M Kawaihae Harbor Hawaii-5
45’ RB-M Lahaina Harbor Hawaii-2
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Apra Harbor Guam-0
45’ RB-M Apra Harbor Guam-0

Fixed Wing
C-130J Kona Intl Airport Hawaii-9
C-130J Siapan Intl Airport Guam-6

Rotary Wing
H-65 Kahului Airport Hawaii-2 to Hawaii-5
H-65 Antonio B Won Pat Guam-0

Under this notional scenario for the median expected SAR operational demand

levels of each cluster in the AOR, the 225’ WLBs and 87’ CPBs were never utilized

for SAR missions. This is due to their relatively slower maximum speed compared

to those of vessels stationed in the same region; the median demand level was not

enough to exceed the monthly mission capacities on the preferred assets and force

these slower vessels into action. In real-world operations, the USCG balances more

missions than SAR against their monthly operational allowances and the assumption

that every asset is at homeport when an emergency arises does not hold; this analysis
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should therefore not be construed as denigrating the contribution of the 225’ WLBs

and 87’ CPBs to the D14 fleet. These results suggest that, when available, FRCs are

the preferred asset for SAR operations and the placement of this capability in Sector

Guam can shift the SAR workload off the 110’ WPBs, thus reducing the anticipated

response time.

4.2.2 75th Percentile Demand

The elevated demand levels at the 75th percentile were examined to assess an

increased level of risk in the SAR mission. The operational tempos in these solutions

were expected to be higher than what likely to occur for a given real-world month,

with each cluster exhibiting demand levels that equal or exceed 7,500 of the 10,000

simulated months. The Pareto frontier for the solutions associated with the 75th

percentile demand level are shown in Figure 6. After iteratively adjusting the weight-

ing values between each run and comparing the solutions to each other, only one

dominated solution was identified. The trade-off between the competing objectives

became clear from the visualization of the frontier: when no allegiance to the current

homeports was considered, the response time to anticipated SAR levels was shown to

reduce by approximately 56%. This reduction required a drastic reallocation of D14

assets, which will be discussed below.
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Figure 6. Pareto Frontier for 75th Percentile of Demand Level

Similar to the previous section, the specific results of three solutions along the

pareto frontier were considered further. Table 21 depicts the posturing of the as-

sets that minimized the response time for SAR events when D14 was not granted

the flexibility of reassigning assets to new homeports (i.e., wReassign = 0.99995 and

wRespond = 0.00005). This solution resulted in a total response time of 668.735 hours.

Due to the increased level of demand, the SAR mission workload was spread to in-

clude those mission frames previously disregarded, namely the 225’ WLBs and the

87’ CPBs. Interestingly, one of the faster 87’ CPBs remained without any postured

workload opting instead to task the slower 225’ WLB with the SAR events in zone

Hawaii-11. This result is a consequence of the distance to the particular superacci-

dent site and the large mission range of the 225’ WLB. Additionally, the fixed-wing

aircraft stationed with Sector Guam was also postured to respond to emergency that

arose in zone Hawaii-12; this was due to the proximity of Hawaii-12 to Guam versus

the Hawaiian Islands.
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Table 21. Results for 75th Percentile Demand, No Reassignment

Asset Homeport Superaccident Sites

Cutter

225’ WLB Honolulu Harbor Hawaii-11
225’ WLB Apra Harbor Guam-6, Guam-8
110’ WPB Apra Harbor Guam-6, Guam-8
110’ WPB Apra Harbor Guam-7

FRC Honolulu Harbor Hawaii-10, Hawaii-13
FRC Honolulu Harbor Hawaii-11, Hawaii-14
FRC Honolulu Harbor Hawaii-9, Hawaii-12

87’ CPB Honolulu Harbor –
87’ CPB Honolulu Harbor Hawaii-9

Boat

45’ RB-M Honolulu Harbor Hawaii-4
45’ RB-M Honolulu Harbor Hawaii-4
45’ RB-M Kahului Harbor Hawaii-2, Hawaii-5
45’ RB-M Kahului Harbor Hawaii-2, Hawaii-5
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Apra Harbor Guam-0
45’ RB-M Apra Harbor Guam-0

Fixed Wing
C-130J Lihue Airport Hawaii-9, 10, 11, 13, 14
C-130J Antonio B Won Pat Guam Events, Hawaii-12

Rotary Wing
H-65 Lihue Airport Hawaii Events
H-65 Antonio B Won Pat Guam Events

Allowing for more flexibility in reassigning assets, the solution that yielded the

minimum unweighted sum of costs was examined (i.e., wReassign = 0.60 and wRespond =

0.40). Table 22 depicts the posturing of the assets that corresponds with these weights,

which resulted in a total response time of 370.191 hours. When the possibility for

moderate reassignment was allowed, the SAR workload was once again shifted off

the 225’ WLB and 87’ CPBs stationed at Honolulu Harbor. The faster FRC vessels

were dispersed, with two moving to the western coast of the big island of Hawai’i.

Similar to the trend observed in at the median demand level, the boat events in zone

Hawaii-4 were shifted from Honolulu Harbor to Pearl Harbor.
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Table 22. Results for 75th Percentile Demand, Moderate Reassignment

Asset Homeport Superaccident Sites

Cutter

225’ WLB Honolulu Harbor –
225’ WLB Rota West Harbor Guam-6
110’ WPB Tomil Harbor Guam-7
110’ WPB Pohnpei Harbor Guam-8

FRC Kawaihae Harbor Hawaii-9, Hawaii-11
FRC Kawaihae Harbor Hawaii-9, 11, 14
FRC Honolulu Harbor Hawaii-10, Hawaii-13

87’ CPB Honolulu Harbor –
87’ CPB Honolulu Harbor –

Boat

45’ RB-M Honolulu Harbor –
45’ RB-M Pearl Harbor Hawaii-4
45’ RB-M Kahului Harbor Hawaii-2, Hawaii-5
45’ RB-M Kahului Harbor Hawaii-2, Hawaii-5
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Apra Harbor Guam-0
45’ RB-M Apra Harbor Guam-0

Fixed Wing
C-130J Kahului Airport Hawaii-9, 10, 11, 13, 14
C-130J Antonio B Won Pat Guam Events, Hawaii-12

Rotary Wing
H-65 Kahului Airport Hawaii Events
H-65 Antonio B Won Pat Guam Events

The solution for the optimal configuration of D14 assets across the Pacific region

without enforced adherance to the current homeports (i.e., wReassign = 0.00005 and

wRespond = 0.99995) is displayed in Table 23. This solution reduced the anticipated

response time to 288.842 hours. When the model was permitted to station assets

uninhibited, the workload becomes shared by nearly all the vessels as they are spread

across the region away from Guam and the Hawaiian Islands. Sector Guam and

Sector Honolulu/D14 Headquarters each have a 225’ WLB, 110’ WPB, FRC, and

87’CPB. Two of the faster FRCs are placed on the island of Hawai’i and share the

workload of the distant superaccident site Hawaii-11. Similar to when the median

demand level was used, the boats notionally stationed on northern Maui are split

between the western coastline of Maui and the western coastline of Hawai’i.
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Table 23. Results for 75th Percentile Demand, Maximum Reassignment

Asset Homeport Superaccident Sites

Cutter

225’ WLB Honolulu Harbor –
225’ WLB Port of Kwajalein Hawaii-12
110’ WPB Port of Johnston Atoll Hawaii-13
110’ WPB Tomil Harbor Guam-7

FRC Pohnpei Harbor Guam-8
FRC Hilo Harbor Hawaii-11, Hawaii-14
FRC Port of Kailua Kona Hawaii-9, Hawaii-11

87’ CPB Port of Midway Islands Hawaii-10
87’ CPB Port of Tinian Guam-6

Boat

45’ RB-M Honolulu Harbor –
45’ RB-M Pearl Harbor Hawaii-4
45’ RB-M Kawaihae Harbor Hawaii-5
45’ RB-M Lahaina Harbor Hawaii-2
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Apra Harbor Guam-0
45’ RB-M Apra Harbor Guam-0

Fixed Wing
C-130J Kona Intl Airport Hawaii-9, 10, 11, 13, 14
C-130J Chuuk Intl Airport Guam Events, Hawaii-12

Rotary Wing
H-65 Kahului Airport Hawaii Events
H-65 Antonio B Won Pat Guam Events

Under this notional scenario for the elevated SAR operational demand levels of

the 75th percentile for each cluster in the AOR, the monthly operational allowances

were constraining and the model was forced to incorporate the use of the 225’ WLBs

and 87’ CPBs. Nevertheless, when a configuration allowed for the choice between

these or the faster 110’ WPBs/FRCs, it opted for the latter. In addition to the

constraining effects of the monthly capacity restrictions, the elevated demand levels

of the clusters allowed for the emergence of trends away from Guam and the Hawaiian

Islands; the assets began to spread throughout Sector Guam and Sector Honolulu/D14

Headquarters regions.

The rationale for considering the 75th percentile in addition to the median de-

mand levels was to provide strategic insight for decision makers that considered the

probabilistic risk of occasionally high tempo months for various clusters. This ratio-
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nale leads to the inevitable question: does expending the effort to posture for more

dire SAR scenarios result in improved steady-state postures for months with average

demand levels? To answer this, we used the optimal configuration from Table 23

and set these locations as the current homeports for formulation modelling the 50th

percentile of demand. The objective cost weights were set to wReassign = 0.99995

and wRespond = 0.00005 such that the assets were restricted to these homeports while

attempting to minimize the response to SAR events. The resulting posture is shown

in Table 24.

Table 24. Results for the Optimal Configuration at 75th Percentile Demand, Applied
to 50th Percentile Demand

Asset Homeport Superaccident Sites

Cutter

225’ WLB Honolulu Harbor –
225’ WLB Port of Kwajalein –
110’ WPB Port of Johnston Atoll –
110’ WPB Tomil Harbor Guam-7

FRC Pohnpei Harbor Guam-8
FRC Hilo Harbor –
FRC Port of Kailua Kona Hawaii-9

87’ CPB Port of Midway Islands Hawaii-10
87’ CPB Port of Tinian Guam-6

Boat

45’ RB-M Honolulu Harbor –
45’ RB-M Pearl Harbor Hawaii-4
45’ RB-M Kawaihae Harbor Hawaii-5
45’ RB-M Lahaina Harbor Hawaii-2
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Nawiliwili Harbor Hawaii-3
45’ RB-M Apra Harbor Guam-0
45’ RB-M Apra Harbor Guam-0

Fixed Wing
C-130J Kona Intl Airport Hawaii-9
C-130J Chuuk Intl Airport Guam-6

Rotary Wing
H-65 Kahului Airport Hawaii-2 to Hawaii-5
H-65 Antonio B Won Pat Guam-0

Solving the model for 50th percentile of SAR demand yielded the optimal pos-

turing depicted in Table 24 with an associated total response time of 41.282 hours.

When compared to the minimal response time for the current configuration (i.e.,

69



www.manaraa.com

118.950 hours), a substantial decrease of 65.3% was observed. This supported the

hypothesis that posturing for lower probability, higher risk demand levels yielded a

configuration that was capable of drastically reducing the anticipated response time

for SAR emergencies. The converse of this hypothesis was not true: when the optimal

configuration for the 50th percentile solution shown in Table 20 was applied to a high

tempo scenario with the 75th percentile demand levels, the minimal response time

was 626.786. This was only a 6.3% reduction in total SAR response time for the

simulated month.

4.3 Additional Asset Location Problem

The second location problem considered a scenario to provide strategic insight

regarding the acquisition of new assets. In the notional scenario examined, D14 had

all its assets stationed at the current homeports (per Table 35 in Appendix B) and

had the opportunity to acquire one new asset. The associated question, then, was

what asset should D14 acquire and where should it station this new asset? For this

formulation, the objective was to minimize the total response time to all SAR events

for a given month. The minimization of the maximum response time had originally

been considered by the team, but proved to be largely unaffected by the addition of

most cutter assets. Therefore, while the corresponding maximum response time was

noted for each solution, it was not included in the objective function. Once again,

the demand levels for the simulated month were evaluated at both the 50th and 75th

percentiles of demand.

The possible homeports for the new asset to be assigned to were limited to these

in the notional scenario that D14 currently operates out of: Honolulu Harbor, Apra

Harbor, Kahului Harbor, Nawiliwili Harbor, Lihue Airport, and Antonio B. Won Pat

International Airport. This was more inline with the reality that D14 would face
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when seeking to acquire a new asset - the possibility of opening a new station is a

separate and more politically-intensive matter.

In the analysis that follows, only the addition of a new cutter is considered. The

results from the first location problem demonstrated that the posturing of fixed-wing,

rotary-wing, and boat assets remain relatively consistent. Within the scope of this

thesis (i.e., only considering the SAR mission), there isn’t a need for an additional

aircraft or boat. For example, if the model were evaluated to consider adding a

new C-130J to the D14 fleet, it would arbitrarily place it at either Lihue Airport

or Antonio B. Won Pat International Airport but would never require the use of

the new asset since the current aeronautical fleet is not constrained by operational

mission allowances.

4.3.1 50th Percentile Demand

For the median demand level in each cluster, the optimal placement of additional

cutter assets is shown in Table 25. With the exception of a new FRC vessel, all new

cutters were stationed within the Hawaiian Islands out of Kahului Harbor, on the

northern shore of Maui. Conversely, an additional FRC was optimally stationed at

Apra Harbor to more quickly respond to demand out of zone Guam-8; this explained

the observed drop in the maximum response time, which was otherwise dictated by

the ability for the 110’ WPB vessel to respond to Guam-8. These results indicated

that the current configuration of D14 assets could be improved by including a new

cutter asset, with improvements in total monthly response time ranging from 0.9%

with the addition of a new 225’ WLB to 5.6% with the addition of a new FRC.
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Table 25. Results for the Optimal Placement of Additional Cutter Asset at 50th Per-
centile Demand

Total Max
Asset Homeport Response Response

(Hrs) (Hrs)

Baseline – 118.950 24.945
225’ WLB Kahului Harbor 117.884 24.945
110’ WPB Kahului Harbor 115.428 24.945

FRC Apra Harbor 112.332 23.163
87’ CPB Kahului Harbor 115.585 24.945

4.3.2 75th Percentile Demand

The optimal placement of additional cutter assets at the 75th percentile of demand

is shown in Table 26. When accounting for the possibility of elevated demand levels,

the model’s solutions showed that the optimal placement for any new cutter asset

given the current D14 posture is at Apra Harbor. Interestingly, the addition of cutter

asset to the the fleet resulted in a 42% decrease for the maximum response time, from

108.333 hours to 61.905, both of which were affiliated with operations out of Sector

Honolulu/D14 Headquarters. This counter-intuitive phenomena was explained by the

second-order effects of adding a cutter asset to Guam. Given the current posture,

the optimal response strategy includes the 225’ WLB stationed in Honolulu Harbor

responding to events in zone Hawaii-11, which corresponds to a response time of

108.333 hours. When a new cutter asset was added to Apra Harbor, one of the 110’

WPB vessels stationed in Apra Harbor was freed to respond to workload in zone

Hawaii-12, which subsequently freed one of the FRC vessels in Honolulu Harbor to

take on activity in Hawaii-11.
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Table 26. Results for the Optimal Placement of Additional Cutter Asset at 75th Per-
centile Demand

Total Max
Asset Homeport Response Response

(Hrs) (Hrs)

Baseline – 668.735 108.333
225’ WLB Apra Harbor 637.353 61.905
110’ WPB Apra Harbor 586.627 61.905

FRC Apra Harbor 577.780 61.905
87’ CPB Apra Harbor 587.961 61.905

These results indicated that the current configuration of D14 assets could be im-

proved by including a new cutter asset, with improvements in total monthly response

time ranging from 4.7% with the addition of a new 225’ WLB to 13.6% with the

addition of a new FRC. Once again, the rationale for considering the 75th percentile

was to provide strategic insight for decision makers based on the probabilistic risk of

occasionally high tempo months for various clusters. Comparing the recommendation

from Table 26 to assign any new asset to Apra Harbor with the anticipated workload

at the median demand level, it was found that, with the exception of the FRC, any

additional cutter on Apra Harbor did not correspond to a reduction in total or max-

imum response time. This phenomenon was due to the demand level in Hawaii-12;

most of the simulated months yielded no SAR events in zone Hawaii-12, which does

not enable any of the vessels stationed in Apra Harbor to offset the workload of Sector

Honolulu/D14 Headquarters as was previously described. Conversely, the addition of

a new FRC at Apra Harbor was already shown to yield reductions in response time

at the median demand level.

4.4 Forward Deployed Asset Location Problem

The third location problem considered a scenario of forward deploying assets in

anticipation of predicted SAR demand levels. In the notional scenario examined, D14
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had all its assets stationed at the current homeports (per Table 35 in Appendix B)

and has the opportunity to deploy a single asset away from the Hawaiian Islands and

Guam. The resulting question, then, was which asset should be deployed and where

should it be deployed to. For this formulation, the objective from the perspective of

D14 was to minimize the total response time to all SAR events for a given month. For

the same reasons as previously stated, the corresponding maximum response time was

noted for each solution but was not included in the objective function. Once again,

the demand levels for the simulated month were evaluated at were the 50th and 75th

percentiles of demand to model the expected month of activity and a month with

higher operations tempos.

The possible homeports for the deployed asset to be assigned to were all locations

considered in the first location model; see Table 34 in Appendix B. This wide array

of harbors and airports extended the potential reach of the USCG across the region

to identify the areas that most readily needed the support.

4.4.1 50th Percentile Demand

For the median demand level in each cluster, the optimal deployment of each

assets is shown in Table 27. The model indicated that given the opportunity to

deploy any cutter, it would be moved to Tomil Harbor on Yap Island. Any type

of cutter deployed to this region projected similar decreases in total response time,

though a FRC deployed to Tomil Harbor did exhibit the largest decrease in response

time. Notably, the maximum response time (associated with the time required to

respond to Guam-8) was not effected by any deployment scenario.
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Table 27. Results for 50th Percentile Demand, Asset Deployment

Total Max
Asset Homeport Deploy To Response Response

(Hrs) (Hrs)

Baseline – – 118.950 24.945
225’ WLB Honolulu Harbor Tomil Harbor 89.408 24.945
225’ WLB Apra Harbor Tomil Harbor 89.408 24.945
110’ WPB Apra Harbor Tomil Harbor 84.325 24.945

FRC Honolulu Harbor Tomil Harbor 83.744 24.945
87’ CPB Honolulu Harbor Tomil Harbor 84.650 24.945

45’ RB-M – Kawaihae Harbor 117.699 24.945
C-130J Lihue Airport Kona Intl 117.380 24.945
C-130J Antonio B Won Pat Saipan Itnl 118.950 24.945
H-65 Lihue Airport Kahului Airport 116.561 24.945
H-65 Antonio B Won Pat Antonio B Won Pat 118.950 24.945

Due to the relatively short travel time for boat events as well as the speed of the

C-130Js, the deployment of boats and aircraft projected smaller impacts on the total

response time. Given the opportunity to move any boat, the 45’ RB-M was moved

to Kawaihae Harbor, on the western side of the big island of Hawai’i. The aircraft

shifted moderately as well when enabled to deploy, with the notable exception of the

H-65 stationed at Antonio B Won Pat International Airport; this aeronautical asset

was already positioned at the optimal airport to respond to Sector Guam boat events.

4.4.2 75th Percentile Demand

For the 75th percentile level of demand in each cluster, the optimal deployment of

each assets is shown in Table 28. Aside from the deployment of Honolulu’s 225’ WLB

to Tomil Harbor, all other cutters were recommended to be positioned at Pohnpei

Harbor in the Federal States of Micronesia. In most of these cases, the deployment of a

cutter to this region resulted in a drop in the maximum response time. Interestingly,

this did not hold true for the deployment of the FRC, despite being the fastest

available asset. The reason is the maximum response time is largely driven by the

availability of an FRC to respond to events in isolated zones such as Hawaii-11.
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When any cutter was deployed, with the exception of the FRC, the deployed cutter

was able to handle SAR workload within that area causing a shift in workload which

freed the FRCs in Honolulu Harbor to perform more of the isolated workload. When

an FRC was deployed away from the Hawaiian Islands, it left behind its workload for

the remaining two FRCs stationed in Honolulu and prevented them from having the

availability to respond to those isolated cases.

Table 28. Results for 75th Percentile Demand, Asset Deployment

Total Max
Asset Homeport Deploy To Response Response

(Hrs) (Hrs)

Baseline – – 668.735 108.333
225’ WLB Honolulu Harbor Tomil Harbor 527.544 74.836
225’ WLB Apra Harbor Pohnpei Harbor 534.379 88.069
110’ WPB Apra Harbor Pohnpei Harbor 479.221 85.516

FRC Honolulu Harbor Pohnpei Harbor 513.839 108.333
87’ CPB Honolulu Harbor Pohnpei Harbor 474.499 61.905

45’ RB-M – Kawaihae Harbor 666.233 108.333
C-130J Lihue Airport Kona Intl 666.525 108.333
C-130J Antonio B Won Pat Chuuk Itnl 667.013 108.333
H-65 Lihue Airport Kahului Airport 664.065 108.333
H-65 Antonio B Won Pat Antonio B Won Pat 668.735 108.333

The results in Table 28 indicated that the greatest projected decrease in total

response time was achieved with the deployment of an 87’ CPB from Honolulu Harbor

to Pohnpei Harbor. Additionally, the deployment of a 110’ WPB from Apra Harbor

yielded similar results and was thought to be a significantly more realistic endeavor

given the anticipated complications of transporting an 87’ CPB to Pohnpei Harbor

from Honolulu Harbor. The results with regard to boats and aircraft were similar to

those observed at the median demand levels.

As with the previously discussed location models, it was of interest to observe

the ability for the optimal deployment strategies at the heightened 75th percentile of

demand to perform at the median demand levels; the results of this consideration are
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shown in Table 29. In all instances except for the deployment of the C-130J to Chuuk

International Airport, the total response hours are lowered from the baseline by the

deployment. For the cutter assets that deployed to Pohnpei Harbor, the decrease in

total response hours was not as large as if they had deployed to Tomil Harbor as

demonstrated in Table 27. Despite this trend, the movement of these cutter assets

to Pohnpei Harbor instead of Tomil Harbor did result in a decrease to the maximum

response time due to the closer proximity to the superaccident site in zone Guam-8.

Table 29. Results for Optimal Deployment at 75th Percentile Demand, Applied to 50th
Percentile Demand

Total Max
Asset Homeport Deploy To Response Response

(Hrs) (Hrs)

Baseline – – 118.950 24.945
225’ WLB Honolulu Harbor Tomil Harbor 89.408 24.945
225’ WLB Apra Harbor Pohnpei Harbor 104.287 21.379
110’ WPB Apra Harbor Pohnpei Harbor 90.738 21.379

FRC Honolulu Harbor Pohnpei Harbor 89.189 21.379
87’ CPB Honolulu Harbor Pohnpei Harbor 91.605 21.379

45’ RB-M – Kawaihae Harbor 117.699 24.945
C-130J Lihue Airport Kona Intl 117.380 24.945
C-130J Antonio B Won Pat Chuuk Itnl 120.572 24.945
H-65 Lihue Airport Kahului Airport 116.561 24.945
H-65 Antonio B Won Pat Antonio B Won Pat 118.950 24.945
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V. Conclusions and Future Research

5.1 Conclusion

In this thesis, we evaluated SAR operations across the Pacific Ocean for the USCG

to inform the strategic posturing of D14 maritime and aviation assets in anticipation

of these emerging missions. We decomposed this problem into three distinct research

questions.

First, we considered whether there existed any external factors that influenced

the frequency or location of SAR emergencies. Implementing time-series analysis

techniques, it was determined that, with the exception of the waters surrounding

the Hawaiian Island of O’ahu, the time of year did not affect the levels of observed

SAR events to a statistically significant level. For the O’ahu coastline, a regular

increase in documented events was noted in the summer months of June through

August, with routine peaks of activity in July. Fitting a first-order linear regression

model to the time-series data, it was found that the tourism rates to O’ahu could

account for approximately 50% of the variation from summer to summer. However,

the availability of summer data was limited and further testing is recommended to

reinforce this model.

Second, we developed a novel technique for forecasting the location, frequency,

and corresponding operational response of future SAR events throughout the D14

AOR; we referred to this method as the stochastic zonal distribution model. Large

quantities of historic SAR events were aggregated based on geographic region, re-

sponse type, and coordinating unit using k-means clustering methods. The weighted

centers for each of these zones were then computed using center of mass calculations

as described by Azofra et al. [14], but factoring in the relative magnitude of each

event as inspired by Razi and Karatas [15]. Acknowledging the inherent stochastic
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nature of emerging SAR events as noted by Afshartous et al. [13], we fit separate

probability distributions to each cluster to describe the rate of emergencies. Historic

records of the resources dispatched for all SAR events in the AOR were synthesized

and probabilistic models developed to simulate the varying response options that

were implemented for events in each zone. These models were combined into a two-

tier Monte Carlo simulation, uniquely constructed for each zone, which simulated

SAR emergencies and their corresponding D14 response. The deliverable from the

stochastic zonal distribution model was a series of GPS coordinates for the weighted

centroids, known as superaccident sites, and respective demand levels for maritime

and aviation assets each month.

Lastly, we utilized the simulated demand levels for each cluster to evaluate the ef-

fectiveness of the current D14 fleet posture as well as recommend changes in resource

distribution. A mixed-integer location problem was developed to consider the trade-

offs inherent in minimizing both the time required to respond to SAR events and the

cost required to change the posture of the D14 assets. Additional models considered

the strategic incentives for acquiring additional maritime resources and the potential

impact that forward deployment of D14 assets could have on responding more quickly

to SAR emergencies.

5.2 Recommendation to D14

Having concluded the thesis research and in addition to the spatiotemporal pro-

jections of SAR operations across the AOR, we consolidated our findings into the

following recommendations for D14 leadership:

• Anticipate annual surges in SAR workload off the coastline of O’ahu during the

summer months, particularly in the month of July. Insights into the anticipated

level of this surge can be gauged by considering the expected tourism rates for
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a given summer.

• The placement of USCG assets on the big island of Hawai’i, either in the form

of a boat station along the western coastline of the island or a cutter stationed

near Hilo, may provide strategic advantages by expanding USCG coverage of the

Hawaiian Islands and reducing the overall response time for SAR emergencies.

• If D14 has the opportunity to acquire a new asset, leadership should advocate

for a new Fast Response Cutter and station it at Apra Harbor to support Sector

Guam’s SAR operations.

• A partnership with rescue teams in or near the Federated States of Micronesia

would be expected to reduce to overall response time to SAR emergencies,

particularly those in zone Guam-8 further from Apra Harbor.

5.3 Recommendations for Future Research

Despite the level of fidelity that was sought to be contained within the span of

this thesis, we were limited in time and data. Future research into this topic could

continue to develop the stochastic zonal distribution model, particularly as it relates

to the duration of SAR missions. Whereas our research utilized a static notional

mission length of 90 minutes, more accurate historical records could be evaluated and

the location models could be updated. By more accurately capturing the variability

of mission length, the projections of anticipated monthly asset utilization would be

improved upon thus increasing the accuracy of the operational capacity metrics.

Additionally, a plethora of multivariate technique have been described in previous

research on crime forecasting and may be suitable for forecasting changes in USCG

operations including and beyond SAR. While we began to initially consider these

techniques in our own research, time and lack of familiarity prevented a more thorough
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exploration. We speculate that additional research into applying these techniques to

USCG missions can provide greater fidelity regarding the categorization of future

event projections.

During initial communications with USCG subject matter experts, the problems

associated with aggregating and synthesizing information from the MISLE database

were frequently discussed. The application of textual analysis to this database may be

able to provide strategic insights to sector and district leaders by revealing otherwise

unobserved trends into USCG operations by teams across the chain of command.

Lastly, we recommend future efforts consider the inclusion of the other USCG

missions into the stochastic zonal distribution model. The literature review revealed

a collection of previous research into the anticipated demand and scheduling of USCG

assets, and we believe that an expansion of our technique into this domain could both

serve to construct a more thorough collection of location models while also providing

insights regarding the total operational workload across the district.
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Appendix A. Stochastic Zonal Distribution Model

Table 30. Weighted v. Unweighted Superaccident Site Coordinates

Centroids

Cluster Weighted Unweighted ∆ (nm)

Guam-0 13◦25′52.179′′N, 144◦41′45.1104′′E 13◦26′1.2114′′N, 144◦41′54.567′′E 0.215
Guam-1 14◦2′25.3788′′N, 145◦9′29.6346′′E 14◦2′40.6752′′N, 145◦9′31.3482′′E 0.257
Hawaii-2 20◦48′36.1902′′N, 156◦35′53.9484′′W 20◦48′33.246′′N, 156◦35′36.8262′′W 0.271
Hawaii-3 21◦59′35.8044′′N, 159◦24′40.143′′W 21◦59′51.1332′′N, 159◦27′2.0412′′W 2.209
Hawaii-4 21◦22′46.7472′′N, 157◦56′10.5138′′W 21◦21′36.8244′′N, 157◦54′40.5498′′W 1.820
Hawaii-5 19◦58′4.332′′N, 156◦0′57.852′′W 19◦55′57.7374′′N, 155◦58′43.2582′′W 2.985
Guam-6 14◦27′44.985′′N, 145◦36′1.0074′′E 14◦14′41.7732′′N, 145◦39′58.8492′′E 13.616
Guam-7 8◦48′38.415′′N, 136◦29′7.35′′E 8◦57′24.372′′N, 136◦29′10.5936′′E 8.772
Guam-8 6◦59′52.548′′N, 153◦28′20.3874′′E 6◦54′39.8982′′N, 154◦22′44.7666′′E 54.293
Hawaii-9 20◦3′10.011′′N, 156◦35′43.8144′′W 20◦2′29.3784′′N, 156◦34′41.9118′′W 1.183
Hawaii-10 29◦42′5.022′′N, 179◦43′38.6322′′E 29◦26′46.251′′N, 178◦32′31.794′′W 91.650
Hawaii-11 8◦4′46.416′′N, 131◦15′44.3736′′W 7◦47′13.2108′′N, 131◦44′42.4824′′W 33.658
Hawaii-12 10◦41′58.4484′′N, 168◦42′48.7764′′E 10◦54′1.6416′′N, 169◦2′19.4994′′E 22.657
Hawaii-13 3◦46′51.2034′′N, 164◦55′1.362′′W 3◦22′43.626′′N, 165◦59′15.2088′′W 68.541
Hawaii-14 27◦48′16.1058′′N, 147◦54′4.2366′′W 27◦26′3.0732′′N, 147◦36′36.6006′′W 27.091

Table 31. Summary of Pearson’s Chi-Squared Goodness-of-Fit Test Results

Poisson Distribution Gamma-Poisson Distribution

Cluster p-Value λ p-Value α β

Guam-0 0.2191 5.433 0.4575 52.748 0.103
Guam-1 0.1635 0.533 0.4458 4.069 0.131
Hawaii-2 0.8786 6.256 – – –
Hawaii-3 0.0126 3.044 0.4535 8.672 0.351
Hawaii-4 0.0101 13.022 0.3876 39.105 0.333
Hawaii-5 0.1137 1.378 0.4449 8.202 0.168
Guam-6 0.0605 2.689 0.4422 11.951 0.225
Guam-7 0.3751 1.756 0.4624 51.647 0.034
Guam-8 0.0325 1.733 0.3485 7.535 0.230
Hawaii-9 0.2693 3.644 0.4438 50.611 0.072
Hawaii-10 0.0053 0.978 0.4006 2.560 0.382
Hawaii-11 0.0775 0.833 0.5569 3.254 0.256
Hawaii-12 0.0307 0.700 0.5664 2.047 0.342
Hawaii-13 0.6819 0.833 – – –
Hawaii-14 0.0450 1.044 0.4248 4.332 0.241
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Table 33. Monte Carlo Simulation Results

Cluster Mean Std. Dev. Min 25% 50% 75% Max

Guam-0
Nbr SAR Events 5.394 2.437 0 4 5 7 18
Maritime Assets 6.673 3.553 0 4 6 9 26

Aero. Assets 1.605 1.411 0 1 1 2 11

Guam-1
Nbr SAR Events 0.551 0.795 0 0 0 1 6
Maritime Assets 0.248 0.568 0 0 0 0 8

Aero. Assets 0.384 0.672 0 0 0 1 5

Hawaii-2
Nbr SAR Events 6.289 2.518 0 5 6 8 17
Maritime Assets 6.457 3.068 0 4 6 8 24

Aero. Assets 2.509 1.859 0 1 2 4 14

Hawaii-3
Nbr SAR Events 3.059 2.048 0 2 3 4 15
Maritime Assets 3.254 2.634 0 1 3 5 18

Aero. Assets 1.822 1.739 0 0 1 3 12

Hawaii-4
Nbr SAR Events 13.022 4.146 1 10 13 16 31
Maritime Assets 12.432 5.034 0 9 12 16 36

Aero. Assets 8.006 3.546 0 0 1 2 9

Hawaii-5
Nbr SAR Events 1.388 1.272 0 0 1 2 9
Maritime Assets 1.316 1.868 0 0 1 2 15

Aero. Assets 1.668 1.707 0 0 1 3 12

Guam-6
Nbr SAR Events 2.652 1.796 0 1 2 4 17
Maritime Assets 2.776 2.324 0 1 2 4 17

Aero. Assets 1.125 1.221 0 0 1 2 10

Guam-7
Nbr SAR Events 1.756 1.351 0 1 2 3 8
Maritime Assets 2.621 2.374 0 1 2 4 17

Aero. Assets 0.218 0.593 0 0 0 0 5

Guam-8
Nbr SAR Events 1.718 1.451 0 1 1 3 10
Maritime Assets 3.113 3.149 0 1 2 5 26

Aero. Assets 0.938 1.294 0 0 0 2 10

Hawaii-9
Nbr SAR Events 3.643 1.973 0 2 3 5 13
Maritime Assets 2.821 2.441 0 1 2 4 19

Aero. Assets 3.799 2.456 0 2 3 5 15

Hawaii-10
Nbr SAR Events 0.960 1.133 0 0 1 2 8
Maritime Assets 0.851 1.352 0 0 0 1 11

Aero. Assets 0.481 0.803 0 0 0 1 6

Hawaii-11
Nbr SAR Events 0.844 1.039 0 0 1 1 9
Maritime Assets 1.060 1.483 0 0 0 2 16

Aero. Assets 0.293 0.683 0 0 0 0 6

Hawaii-12
Nbr SAR Events 0.705 0.966 0 0 0 1 8
Maritime Assets 0.832 1.493 0 0 0 1 13

Aero. Assets 0.610 1.055 0 0 0 1 9

Hawaii-13
Nbr SAR Events 0.830 0.914 0 0 1 1 7
Maritime Assets 0.610 0.922 0 0 0 1 7

Aero. Assets 0.574 0.826 0 0 0 1 8

Hawaii-14
Nbr SAR Events 1.036 1.132 0 0 1 2 9
Maritime Assets 1.071 1.566 0 0 0 1 11

Aero. Assets 0.703 1.079 0 0 0 1 9
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Appendix B. Location Model Parameters

Table 34. List of Candidate Locations, by Category

Candidate Locations

Harbors

Port of Midway Islands Port of Johnston Atoll
Port of Wake Island Port of English Harbor

Port of Betio Port of Kwajalein
Port of Majuro Port of Nauru
Pohnpei Harbor Tomil Harbor

Rota West Harbor Port of Tinian
Port of Siapan Apra Harbor

Port of Kailua Kona Kawaihae Harbor
Kahului Harbor Lahaina Harbor

Kaumalapau Harbor Kaunakakai Harbor
Nawiliwili Harbor Port Allen Harbor

Kewalo Harbor Honolulu Harbor
Ala Wai Harbor Barbers Point

Pearl Harbor Hilo Harbor

Airports

Henderson Field Cassidy Itnl Airport
Wake Island Airport Bucholz Army Airfield

Kahului Airport Kona Intl Airport
Niue Intl Airport Nausori Intl Airport

La Tontouta Intl Airport Enewetak Aux Airport
Antonion B Won Pat Inl Airport Mataveri Island Intl Airport

Faa’a Intl Airport Marshall Island Intl Airport
Lihue Airport Hilo Intl Airport

Rarotonga Intl Airport Faleolo Int Airport
Bauerfield Intl Airport Pohnpei Intl Airport

Chuuk Intl Airport Saipan Intl Airport
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Table 35. Notional Current Allocation of D14 Assets

Monthly
Asset Initial Homeport Capacity

(Hrs)

Cutter

225’ WLB Honolulu Harbor 220
225’ WLB Apra Harbor 220
110’ WPB Apra Harbor 180
110’ WPB Apra Harbor 180

FRC Honolulu Harbor 180
FRC Honolulu Harbor 180
FRC Honolulu Harbor 180

87’ CPB Honolulu Harbor 200
87’ CPB Honolulu Harbor 200

Boat

45’ RB-M Honolulu Harbor 60
45’ RB-M Honolulu Harbor 60
45’ RB-M Kahului Harbor 60
45’ RB-M Kahului Harbor 60
45’ RB-M Nawiliwili Harbor 60
45’ RB-M Nawiliwili Harbor 60
45’ RB-M Apra Harbor 60
45’ RB-M Apra Harbor 60

Fixed Wing
C-130J Lihue Airport 167
C-130J Antonio B Won Pat 167

Rotary Wing
H-65 Lihue Airport 113
H-65 Antonio B Won Pat 113

Table 36. D14 Asset Specifications

Asset Max Range Cruise Speed Max Speed

Cutter

225’ WLB 8000 nm 12 kts 16 kts
110’ WPB 3300 nm 12.8 kts 26 kts

FRC 2500 nm 28 kts 28 kts
87’ CPB 875 nm 25 kts 25 kts

Boat 45’ RB-M 250 nm 30 kts 40 kts

Fixed Wing C-130J 4585 nm 298 ktas 298 ktas

Rotary Wing H-65 375 nm 125 ktas 125 ktas
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Appendix C. Python Code

1 #Import the a p p l i c a b l e packages f o r the code

2 import pandas as pd

3 import numpy as np

4 import math

5 import hdbscan

6 import gmplot

7 import seaborn as sns

8 import pylab as p l

9 import s c ipy . c l u s t e r . h i e ra r chy as sch

10 from sc ipy import s t a t s

11 from sc ipy . s t a t s import po i s son

12 from s k l ea rn . c l u s t e r import Agg lomerat iveCluster ing

13 from s k l ea rn . c l u s t e r import KMeans

14 from s k l ea rn . c l u s t e r import DBSCAN

15 from s k l ea rn . decomposit ion import PCA

16 from matp lo t l i b import pyplot as p l t

17 import matp lo t l i b . c o l o r s as c o l o r s

18 from pandas . p l o t t i n g import a u t o c o r r e l a t i o n p l o t

19 import nbconvert

20 from geopy . d i s t ance import g r e a t c i r c l e

21

22 #Provided GPS data f o r SAR Events and GPS po in t s f o r i s l and s , compute

d i s t a n c e s

23 #This i s used to make the determinat ion between BOAT event v . CUTTER

event

24

25 #Read−in the SAR data

26 i n c i d e n t s = pd . r ead c sv ( ’C: / Users / zhornber /Desktop/SAR Data . csv ’ , eng ine

= ’ python ’ )

27
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28 #Generate an i n c i d e n t l i s t

29 i n c i d e n t l i s t = {}

30 f o r n in range (0 , l en ( i n c i d e n t s ) ) :

31 l a t = i n c i d e n t s . l o c [ n ] [ ’ Primary Locat ion Lat ’ ]

32 long = i n c i d e n t s . l o c [ n ] [ ’ Primary Locat ion Long ’ ]

33 i n c i d e n t l i s t [ n ] = ( la t , long )

34

35 #Generate i s l a n d r e f e r e n c e po in t s

36 Oahu = (21 .436711 , −157.480944)

37 Kauai = (22 .056778 , −159.489969)

38 Maui = (20 .763828 , −156.348461)

39 Guam = (13 .445456 , 144 .753297)

40

41 #Create empty l i s t s to s t o r e d i s t a n c e s

42 distOahu = [ ]

43 distKauai = [ ]

44 distMaui = [ ]

45 distGuam = [ ]

46 C l a s s i f i c a t i o n = [ ]

47

48 #Calcu la te the d i s t a n c e s o f each i n c i d e n t from each i s l a n d

49 #Use Havers ine (” Great C i r c l e ”) d i s t anc e f o r computations

50 f o r inc ident , coord in i n c i d e n t l i s t . i tems ( ) :

51 distOahu . append ( g r e a t c i r c l e ( coord , Oahu) . mi l e s ∗ 0 .86897624)

52 distKauai . append ( g r e a t c i r c l e ( coord , Kauai ) . mi l e s ∗ 0 .86897624)

53 distMaui . append ( g r e a t c i r c l e ( coord , Maui ) . mi l e s ∗ 0 .86897624)

54 distGuam . append ( g r e a t c i r c l e ( coord , Guam) . mi l e s ∗ 0 .86897624)

55 i f g r e a t c i r c l e ( coord , Oahu) . mi l e s ∗ 0.86897624 < 65 .95 or

g r e a t c i r c l e ( coord , Kauai ) . mi l e s ∗ 0.86897624 < 61 .86 or

g r e a t c i r c l e ( coord , Maui ) . mi l e s ∗ 0.86897624 < 71 .28 or g r e a t c i r c l e

( coord , Guam) . mi l e s ∗ 0.86897624 < 6 1 . 5 6 :

56 C l a s s i f i c a t i o n . append ( ’ Boat Event ’ )
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57 e l s e :

58 C l a s s i f i c a t i o n . append ( ’ Cutter Event ’ )

59

60 #Take the f i l l e d l i s t s and add them as columns to the end o f the

dataframe

61 i n c i d e n t s [ ’ Distance From Oahu ’ ] = distOahu

62 i n c i d e n t s [ ’ Distance From Kauai ’ ] = distKauai

63 i n c i d e n t s [ ’ Distance From Maui ’ ] = distMaui

64 i n c i d e n t s [ ’ Distance From Guam ’ ] = distGuam

65 i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] = C l a s s i f i c a t i o n

66

67 pr in t ( i n c i d e n t s )

68

69 #Generates a heatmap o f the SAR events us ing Google Maps

70 #HTML f i l e i s s to r ed in ’ zhornber ’ under ’\Users ’

71 #F i r s t l i n e o f code s e t s the i n i t i a l Google Maps view −− Lat , Long , and

Leve l o f Zoom

72 gmap = gmplot . GoogleMapPlotter (21 , −157, 5)

73 gmap . heatmap ( i n c i d e n t s [ ’ Primary Locat ion Lat ’ ] , i n c i d e n t s [ ’ Primary

Locat ion Long ’ ] )

74 gmap . draw ( ”my heatmap . html” )

75

76 #Cluste r the events v ia k−means methods , by c l a s s i f i c a t i o n (BOAT v .

CUTTER)

77 #This w i l l implement the k−means c l u s t e r i n g us ing sk l e a r n . c l u s t e r

78

79 #Employ the elbow method to determine the optimal number o f c l u s t e r s

80 #Clus t e r s f o r BOAT Events near Guam

81 C l u s t e r P o s s i b i l i t y = range (1 , 10)

82 kmeans = [ KMeans( n c l u s t e r s = i ) f o r i in C l u s t e r P o s s i b i l i t y ]

83 s co r e = [ kmeans [ i ] . f i t ( i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’

Boat Event ’ ) & ( i n c i d e n t s [ ’Owner Department ’ ] == ’SECTOR GUAM
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(007408) ’ ) , ’ Primary Locat ion Lat ’ : ’ Primary Locat ion Long ’ ] . va lue s ) .

s c o r e ( i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Boat Event ’ ) &

( i n c i d e n t s [ ’Owner Department ’ ] == ’SECTOR GUAM (007408) ’ ) , ’ Primary

Locat ion Lat ’ : ’ Primary Locat ion Long ’ ] . va lue s ) f o r i in range ( l en (

kmeans ) ) ]

84 pl . p l o t ( C l u s t e r P o s s i b i l i t y , s c o r e )

85 pl . x l a b e l ( ’Number o f C lu s t e r s ’ )

86 pl . y l a b e l ( ’ Score ’ )

87 pl . t i t l e ( ’ Elbow Curve : C lu s t e r s f o r Boat Events Around Guam ’ )

88 pl . show ( )

89

90 #Clus t e r s f o r BOAT Events near Hawaiian I s l a n d s

91 C l u s t e r P o s s i b i l i t y = range (1 , 10)

92 kmeans = [ KMeans( n c l u s t e r s = i ) f o r i in C l u s t e r P o s s i b i l i t y ]

93 s co r e = [ kmeans [ i ] . f i t ( i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’

Boat Event ’ ) & ( i n c i d e n t s [ ’Owner Department ’ ] != ’SECTOR GUAM

(007408) ’ ) , ’ Primary Locat ion Lat ’ : ’ Primary Locat ion Long ’ ] . va lue s ) .

s c o r e ( i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Boat Event ’ ) &

( i n c i d e n t s [ ’Owner Department ’ ] != ’SECTOR GUAM (007408) ’ ) , ’ Primary

Locat ion Lat ’ : ’ Primary Locat ion Long ’ ] . va lue s ) f o r i in range ( l en (

kmeans ) ) ]

94 pl . p l o t ( C l u s t e r P o s s i b i l i t y , s c o r e )

95 pl . x l a b e l ( ’Number o f C lu s t e r s ’ )

96 pl . y l a b e l ( ’ Score ’ )

97 pl . t i t l e ( ’ Elbow Curve : C lu s t e r s f o r Boat Events Around Hawaiian I s l a n d s ’

)

98 pl . show ( )

99

100 #Clus t e r s f o r CUTTER Events in Sector Guam AOR

101 C l u s t e r P o s s i b i l i t y = range (1 , 10)

102 kmeans = [ KMeans( n c l u s t e r s = i ) f o r i in C l u s t e r P o s s i b i l i t y ]

103 s co r e = [ kmeans [ i ] . f i t ( i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’
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Cutter Event ’ ) & ( i n c i d e n t s [ ’Owner Department ’ ] == ’SECTOR GUAM

(007408) ’ ) , ’ Primary Locat ion Lat ’ : ’ Primary Locat ion Long ’ ] . va lue s ) .

s c o r e ( i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Cutter Event ’ )

& ( i n c i d e n t s [ ’Owner Department ’ ] == ’SECTOR GUAM (007408) ’ ) , ’

Primary Locat ion Lat ’ : ’ Primary Locat ion Long ’ ] . va lue s ) f o r i in

range ( l en ( kmeans ) ) ]

104 pl . p l o t ( C l u s t e r P o s s i b i l i t y , s c o r e )

105 pl . x l a b e l ( ’Number o f C lu s t e r s ’ )

106 pl . y l a b e l ( ’ Score ’ )

107 pl . t i t l e ( ’ Elbow Curve : C lu s t e r s f o r Cutter Events in Sector Guam AOR’ )

108 pl . show ( )

109

110 #Clus t e r s f o r CUTTER Events in Sector Honolulu AOR

111 C l u s t e r P o s s i b i l i t y = range (1 , 15)

112 kmeans = [ KMeans( n c l u s t e r s = i ) f o r i in C l u s t e r P o s s i b i l i t y ]

113 s co r e = [ kmeans [ i ] . f i t ( i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’

Cutter Event ’ ) & ( i n c i d e n t s [ ’Owner Department ’ ] == ’SECTOR GUAM

(007408) ’ ) , [ ’ Primary Locat ion Lat ’ , ’ Primary Locat ion Longitude (

Adjusted ) ’ ] ] . va lue s ) . s c o r e ( i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’

] == ’ Cutter Event ’ ) & ( i n c i d e n t s [ ’Owner Department ’ ] == ’SECTOR

GUAM (007408) ’ ) , [ ’ Primary Locat ion Lat ’ , ’ Primary Locat ion

Longitude ( Adjusted ) ’ ] ] . va lue s ) f o r i in range ( l en ( kmeans ) ) ]

114 pl . p l o t ( C l u s t e r P o s s i b i l i t y , s c o r e )

115 pl . x l a b e l ( ’Number o f C lu s t e r s ’ )

116 pl . y l a b e l ( ’ Score ’ )

117 pl . t i t l e ( ’ Elbow Curve : C lu s t e r s f o r Cutter Events in Sector Honolulu AOR

’ )

118 pl . show ( )

119

120 #From the r e s u l t s o f the elbow curves , generate the c l u s t e r s

121 kmeans1 = KMeans( n c l u s t e r s = 2 , i n i t = ’k−means++’ ) . f i t ( i n c i d e n t s . l o c [ (

i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Boat Event ’ ) & ( i n c i d e n t s [ ’Owner
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Department ’ ] == ’SECTOR GUAM (007408) ’ ) , ’ Primary Locat ion Lat ’ : ’

Primary Locat ion Long ’ ] . va lue s )

122 i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Boat Event ’ ) & ( i n c i d e n t s

[ ’Owner Department ’ ] == ’SECTOR GUAM (007408) ’ ) , ’ C lu s t e r s ’ ] =

kmeans1 . l a b e l s

123

124 kmeans2 = KMeans( n c l u s t e r s = 4 , i n i t = ’k−means++’ ) . f i t ( i n c i d e n t s . l o c [ (

i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Boat Event ’ ) & ( i n c i d e n t s [ ’Owner

Department ’ ] != ’SECTOR GUAM (007408) ’ ) , ’ Primary Locat ion Lat ’ : ’

Primary Locat ion Long ’ ] . va lue s )

125 i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Boat Event ’ ) & ( i n c i d e n t s

[ ’Owner Department ’ ] != ’SECTOR GUAM (007408) ’ ) , ’ C lu s t e r s ’ ] =

kmeans2 . l a b e l s + max( kmeans1 . l a b e l s ) + 1

126

127 kmeans3 = KMeans( n c l u s t e r s = 3 , i n i t = ’k−means++’ ) . f i t ( i n c i d e n t s . l o c [ (

i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Cutter Event ’ ) & ( i n c i d e n t s [ ’Owner

Department ’ ] == ’SECTOR GUAM (007408) ’ ) , ’ Primary Locat ion Lat ’ : ’

Primary Locat ion Long ’ ] . va lue s )

128 i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Cutter Event ’ ) & (

i n c i d e n t s [ ’Owner Department ’ ] == ’SECTOR GUAM (007408) ’ ) , ’ C lu s t e r s ’

] = kmeans3 . l a b e l s + max( kmeans1 . l a b e l s ) + max( kmeans2 . l a b e l s ) +

2

129

130 kmeans4 = KMeans( n c l u s t e r s = 6 , i n i t = ’k−means++’ ) . f i t ( i n c i d e n t s . l o c [ (

i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Cutter Event ’ ) & ( i n c i d e n t s [ ’Owner

Department ’ ] != ’SECTOR GUAM (007408) ’ ) , [ ’ Primary Locat ion Lat ’ , ’

Primary Locat ion Longitude ( Adjusted ) ’ ] ] . va lue s )

131 i n c i d e n t s . l o c [ ( i n c i d e n t s [ ’ C l a s s i f i c a t i o n ’ ] == ’ Cutter Event ’ ) & (

i n c i d e n t s [ ’Owner Department ’ ] != ’SECTOR GUAM (007408) ’ ) , ’ C lu s t e r s ’

] = kmeans4 . l a b e l s + max( kmeans1 . l a b e l s ) + max( kmeans2 . l a b e l s ) +

max( kmeans3 . l a b e l s ) + 3

132
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133 #Summarize the C lu s t e r s

134 pr in t ( ’The number o f events in each c l u s t e r are {} . ’ . format ( i n c i d e n t s [ ’

C lu s t e r s ’ ] . va lue count s ( ) ) )

135 #Plot the c o l o r coded s c a t t e r p l o t s o f the SAR i n c i d e n t s

136 p l t . s c a t t e r ( i n c i d e n t s . l o c [ : , ’ Primary Locat ion Longitude ( Adjusted ) ’ ] ,

i n c i d e n t s . l o c [ : , ’ Primary Locat ion Lat ’ ] , c = i n c i d e n t s [ ’ C lu s t e r s ’ ] )

137

138 #Generate a c o l o r coded s c a t t e r p l o t s o f the SAR i n c i d e n t s us ing Google

Maps , by c l u s t e r

139 gmap = gmplot . GoogleMapPlotter (21 , −157, 5)

140 c o l o r s l i s t = l i s t ( c o l o r s . c o l o r s f u l l m a p . va lue s ( ) )

141 f o r c l u s t e r in range (max( kmeans1 . l a b e l s ) + max( kmeans2 . l a b e l s ) + max(

kmeans3 . l a b e l s ) + max( kmeans4 . l a b e l s ) + 4) :

142 gmap . s c a t t e r ( i n c i d e n t s . l o c [ i n c i d e n t s [ ’ C lu s t e r s ’ ] == c l u s t e r , ’

Primary Locat ion Lat ’ ] , i n c i d e n t s . l o c [ i n c i d e n t s [ ’ C lu s t e r s ’ ] ==

c l u s t e r , ’ Primary Locat ion Long ’ ] , c = c o l o r s l i s t [ c l u s t e r ] , s i z e =

10000 , marker = False )

143 gmap . draw ( ” c lus te r s map . html” )

144

145 pr in t ( i n c i d e n t s )

146

147 #Perform time−s e r i e s a n a l y s i s on the now−c l u s t e r e d datase t

148

149 #Convert the dataframe to time−s e r i e s

150 i n c i d e n t s [ ’ datet ime ’ ] = pd . to date t ime ( i n c i d e n t s [ ’ Case Open Date ’ ] )

151 i n c i d e n t s = i n c i d e n t s . s e t i n d e x ( ’ datet ime ’ )

152 t i m e s e r i e s = i n c i d e n t s [ ’ Case ID ’ ] . resample ( ’M’ ) . count ( )

153

154 #For each c l u s t e r . . .

155 f o r c l u s t e r in range (max( kmeans1 . l a b e l s ) + max( kmeans2 . l a b e l s ) + max(

kmeans3 . l a b e l s ) + max( kmeans4 . l a b e l s ) + 4) :

156 #Plot the time−s e r i e s data f o r each c l u s t e r
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157 t i m e s e r i e s = i n c i d e n t s . l o c [ i n c i d e n t s [ ’ C lu s t e r s ’ ] == c l u s t e r , ’ Case

ID ’ ] . resample ( ’M’ ) . count ( )

158 t i m e s e r i e s . p l o t ( f i g s i z e = (15 , 5) )

159 p l t . t i t l e ( ’Number o f SAR Events in Clus te r {} , by Month ’ . format (

c l u s t e r ) )

160 p l t . x l a b e l ( ’Month ’ )

161 p l t . y l a b e l ( ’Number o f SAR Events ’ )

162 p l t . l egend ( ) . s e t v i s i b l e ( Fa l se )

163 p l t . show ( )

164

165 #Generate histograms f o r each c l u s t e r ’ s monthly data

166 #Fit a Poisson d i s t r i b u t i o n to the c l u s t e r e d datase t

167 #Overlay the Poisson d i s t r i b u t i o n to the histogram

168 t i m e s e r i e s . p l o t . h i s t ( f i g s i z e = (15 , 5) )

169 pdf = [ ]

170 r a t e = t i m e s e r i e s . mean ( )

171 number events = t i m e s e r i e s . count ( )

172 rv = po i s son ( ra t e )

173 f o r num in range (max( t i m e s e r i e s ) + 1) :

174 pdf . append ( rv . pmf (num) )

175 pdf = [ x ∗ number events f o r x in pdf ]

176 p l t . p l o t ( pdf , l i n ew id th = 2 . 0 )

177 p l t . t i t l e ( ’ Histogram by Month f o r C lus te r {} ’ . format ( c l u s t e r ) )

178 p l t . x l a b e l ( ’Number o f Monthly SAR Events ’ )

179 p l t . y l a b e l ( ’ Frequency ’ )

180 p l t . l egend ( ) . s e t v i s i b l e ( Fa l se )

181 p l t . show ( )

182 pr in t ( t i m e s e r i e s . va lue count s ( ) )

183 pr in t ( r a t e )

184

185 #Calcu la te the weighted cente r o f the c l u s t e r s

186 c l u s t e r t a b l e = i n c i d e n t s . l o c [ i n c i d e n t s [ ’ C lu s t e r s ’ ] == c l u s t e r ]
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187 c l u s t e r t a b l e . index = np . arange (1 , l en ( c l u s t e r t a b l e ) + 1)

188 #I n i t i a l i z e the parameters

189 sum inc idents = 0

190 sum mag = 0

191 weighted coord x = 0

192 weighted coord y = 0

193 unweighted coord x = 0

194 unweighted coord y = 0

195 #I t e r a t i v e l y weight the SAR i n c i d e n t coo rd ina t e s by the number o f

cor re spond ing a c t i v i t i e s

196 f o r n in range (1 , l en ( c l u s t e r t a b l e ) + 1) :

197 weighted coord x += c l u s t e r t a b l e . l o c [ n ] [ ’ Primary Locat ion

Longitude ( Adjusted ) ’ ] ∗ c l u s t e r t a b l e . l o c [ n ] [ ’ Total A c t i v i t i e s In

Case ’ ]

198 unweighted coord x += c l u s t e r t a b l e . l o c [ n ] [ ’ Primary Locat ion

Longitude ( Adjusted ) ’ ]

199 sum mag += c l u s t e r t a b l e . l o c [ n ] [ ’ Total A c t i v i t i e s In Case ’ ]

200 sum inc idents += c l u s t e r t a b l e . l o c [ n ] [ ’ Ones ’ ]

201 weighted coord y += c l u s t e r t a b l e . l o c [ n ] [ ’ Primary Locat ion Lat ’ ]

∗ c l u s t e r t a b l e . l o c [ n ] [ ’ Total A c t i v i t i e s In Case ’ ]

202 unweighted coord y += c l u s t e r t a b l e . l o c [ n ] [ ’ Primary Locat ion Lat

’ ]

203 l a t i t u d e w t = weighted coord y /sum mag

204 l ong i tude wt = weighted coord x /sum mag

205 l a t i tude unwt = unweighted coord y / sum inc idents

206 l ong i tude unwt = unweighted coord x / sum inc idents

207 #I f necessary , convert l ong i tude back to standard notat ion

208 #Current l o n g i t u d e s are a l l negat ive to account f o r ant imer id ian l i n e

209 i f l ong i tude wt < −180:

210 l ong i tude wt = 180 + ( long i tude wt + 180)

211 i f long i tude unwt < −180:

212 l ong i tude unwt = 180 + ( long i tude unwt + 180)
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213 pr in t ( ’The weighted c en t r o id f o r t h i s c l u s t e r i s at l ong i tude {} and

l a t i t u d e {} . ’ . format ( long i tude wt , l a t i t u d e w t ) )

214 pr in t ( ’The unweighted c en t r o id f o r t h i s c l u s t e r i s at l ong i tude {}

and l a t i t u d e {} . ’ . format ( longitude unwt , l a t i tude unwt ) )

215

216 #Test f o r Autocor re la t ion , by c l u s t e r

217 a u t o c o r r e l a t i o n p l o t ( t i m e s e r i e s )

218 p l t . t i t l e ( ’ Autoco r r e l a t i on Function f o r SAR Events in Clus te r {} ’ .

format ( c l u s t e r ) )

219 p l t . show ( )

220

221 ##This i s an example o f the two−t i e r Monte−Carlo s imu la t i on

222 ##One was b u i l t f o r each c l u s t e r us ing c l u s t e r−s p e c i f i c p r o b a b i l i t i e s

223

224 #Run a Monte−Carlo Simulat ion to model 10 ,000 months

225 #Cluste r Guam−0

226 import numpy as np

227 import random

228

229 demand log = [ ]

230 mar i t ime log = [ ]

231 a e r o n a u t i c a l l o g = [ ]

232 increment = 0

233

234 whi le increment < 10000 :

235 demand = np . random . po i s son (np . random .gamma(52 . 748 , 0 . 103 ) )

236 demand log . append (demand)

237 nbrBoats = 0

238 nbrPlanes = 0

239 f o r i in range (1 , demand + 1) :

240 random . seed ( )

241 k = random . uniform (0 , 1)
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242 i f k < 0 .0839506 :

243 nbrBoats += 0

244 nbrPlanes += 1

245 e l i f k < 0 .0864198 :

246 nbrBoats += 0

247 nbrPlanes += 2

248 e l i f k < 0 .6962963 :

249 nbrBoats += 1

250 nbrPlanes += 0

251 e l i f k < 0 .7827160 :

252 nbrBoats += 1

253 nbrPlanes += 1

254 e l i f k < 0 .7851852 :

255 nbrBoats += 1

256 nbrPlanes += 2

257 e l i f k < 0 .8913580 :

258 nbrBoats += 2

259 nbrPlanes += 0

260 e l i f k < 0 .9209877 :

261 nbrBoats += 2

262 nbrPlanes += 1

263 e l i f k < 0 .9333333 :

264 nbrBoats += 2

265 nbrPlanes += 2

266 e l i f k < 0 .9432099 :

267 nbrBoats += 3

268 nbrPlanes += 0

269 e l i f k < 0 .9555556 :

270 nbrBoats += 3

271 nbrPlanes += 1

272 e l i f k < 0 .9679012 :

273 nbrBoats += 4
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274 nbrPlanes += 0

275 e l i f k < 0 .9802469 :

276 nbrBoats += 4

277 nbrPlanes += 1

278 e l s e :

279 nbrBoats += 4

280 nbrPlanes += 2

281

282 mar i t ime log . append ( nbrBoats )

283 a e r o n a u t i c a l l o g . append ( nbrPlanes )

284 increment += 1

285

286 p l t . h i s t ( demand log )

287 p l t . show ( )

288 demand summary = pd . DataFrame ( demand log )

289 pr in t ( demand summary . d e s c r i b e ( ) )

290

291 p l t . h i s t ( mar i t ime log )

292 p l t . show ( )

293 maritime summary = pd . DataFrame ( mar i t ime log )

294 pr in t ( maritime summary . d e s c r i b e ( ) )

295

296 p l t . h i s t ( a e r o n a u t i c a l l o g )

297 p l t . show ( )

298 aeronautical summary = pd . DataFrame ( a e r o n a u t i c a l l o g )

299 pr in t ( aeronautical summary . d e s c r i b e ( ) )

98



www.manaraa.com

Appendix D. GAMS Code

1 option

2 limrow = 0,

3 limcol = 0,

4 solprint = off,

5 sysout = off;

7 Sets

8 h District 14 Assets

9 /225Ft1, 225Ft2, 110Ft1, 110Ft2, FRC1, FRC2, FRC3, 87Ft1, 87Ft2

, FW1, FW2, RW1, RW2, RBM1, RBM2, RBM3, RBM4, RBM5, RBM6, RBM7, RBM8

/

10 a(h) Cutters

11 /225Ft1, 225Ft2, 110Ft1, 110Ft2, FRC1, FRC2, FRC3, 87Ft1, 87Ft2

/

12 b(h) Boats

13 /RBM1, RBM2, RBM3, RBM4, RBM5, RBM6, RBM7, RBM8/

14 c(h) Fixed−Wing Aircraft /FW1, FW2/

15 d(h) Rotary−Wing Aircraft /RW1, RW2/

16 start Starting Locations

17 /Apra−Harbor,

18 Kahului−Harbor,

19 Nawiliwili−Harbor,

20 Honolulu−Harbor,

21 Lihue−Airport,

22 Antonio−B−Won−Pat−International−Airport/

23 i Candidate Homeports

24 /Port−of−Midway−Islands,

25 Port−of−Johnston−Atoll,

26 Port−of−Wake−Island,

27 Port−of−English−Harbor,

99



www.manaraa.com

28 Port−of−Betio,

29 Port−of−Kwajalein,

30 Port−of−Majuro,

31 Port−of−Nauru,

32 Pohnpei−Harbor,

33 Tomil−Harbor,

34 Rota−West−Harbor,

35 Port−of−Tinian,

36 Port−of−Saipan,

37 Apra−Harbor,

38 Port−of−Kailua−Kona,

39 Kawaihae−Harbor,

40 Kahului−Harbor,

41 Lahaina−Harbor,

42 Kaumalapau−Harbor,

43 Kaunakakai−Harbor,

44 Nawiliwili−Harbor,

45 Port−Allen−Harbor,

46 Kewalo−Harbor,

47 Honolulu−Harbor,

48 Ala−Wai−Harbor,

49 Barbers−Point,

50 Pearl−Harbor,

51 Hilo−Harbor,

52 Henderson−Field,

53 Cassidy−International−Airport,

54 Wake−Island−Airport,

55 Bucholz−Army−Airfield,

56 Kahului−Airport,

57 Kona−International−Airport,

58 Niue−International−Airport,

59 Nausori−International−Airport,
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60 La−Tontouta−International−Airport,

61 Enewetak−Auxiliary−Airport,

62 Antonio−B−Won−Pat−International−Airport,

63 Mataveri−International−Airport,

64 Faaa−International−Airport,

65 Marshall−Island−International−Airport,

66 Lihue−Airport,

67 Hilo−International−Airport,

68 Rarotonga−International−Airport,

69 Faleolo−International−Airport,

70 Bauerfield−International−Airport,

71 Pohnpei−International−Airport,

72 Chuuk−International−Airport,

73 Saipan−International−Airport/

74 e(i) Ports & Harbors

75 /Port−of−Midway−Islands,

76 Port−of−Johnston−Atoll,

77 Port−of−Wake−Island,

78 Port−of−English−Harbor,

79 Port−of−Betio,

80 Port−of−Kwajalein,

81 Port−of−Majuro,

82 Port−of−Nauru,

83 Pohnpei−Harbor,

84 Tomil−Harbor,

85 Rota−West−Harbor,

86 Port−of−Tinian,

87 Port−of−Saipan,

88 Apra−Harbor,

89 Port−of−Kailua−Kona,

90 Kawaihae−Harbor,

91 Kahului−Harbor,
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92 Lahaina−Harbor,

93 Kaumalapau−Harbor,

94 Kaunakakai−Harbor,

95 Nawiliwili−Harbor,

96 Port−Allen−Harbor,

97 Kewalo−Harbor,

98 Honolulu−Harbor,

99 Ala−Wai−Harbor,

100 Barbers−Point,

101 Pearl−Harbor,

102 Hilo−Harbor/

103 f(i) Airports & Helipads

104 /Henderson−Field,

105 Cassidy−International−Airport,

106 Wake−Island−Airport,

107 Bucholz−Army−Airfield,

108 Kahului−Airport,

109 Kona−International−Airport,

110 Niue−International−Airport,

111 Nausori−International−Airport,

112 La−Tontouta−International−Airport,

113 Enewetak−Auxiliary−Airport,

114 Antonio−B−Won−Pat−International−Airport,

115 Mataveri−International−Airport,

116 Faaa−International−Airport,

117 Marshall−Island−International−Airport,

118 Lihue−Airport,

119 Hilo−International−Airport,

120 Rarotonga−International−Airport,

121 Faleolo−International−Airport,

122 Bauerfield−International−Airport,

123 Pohnpei−International−Airport,
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124 Chuuk−International−Airport,

125 Saipan−International−Airport/

126 j Superaccident Sites

127 /Guam−0, Guam−1, Hawaii−2, Hawaii−3, Hawaii−4, Hawaii−5, Guam

−6, Guam−7,

128 Guam−8, Hawaii−9, Hawaii−10, Hawaii−11, Hawaii−12, Hawaii−13,

Hawaii−14/

129 bh(j) Boat & Helicopter Superaccident Sites /Guam−0, Guam−1,

Hawaii−2,Hawaii−3, Hawaii−4, Hawaii−5/

130 ca(j) Cutter & Airplane Superaccident Sites

131 /Guam−6, Guam−7, Guam−8, Hawaii−9, Hawaii−10, Hawaii−11, Hawaii

−12, Hawaii−13, Hawaii−14/

132 ;

134 Parameters

135 latStart(start) Latitude of Starting Location i

136 longStart(start) Longitude of Starting Location j

137 lati(i) Latitude of Homeport i

138 longi(i) Longitude of Homeport i

139 latj(j) Latitude of Superaccident j

140 longj(j) Latitude of Superaccident j

141 reassign dist(start, i) Distance between Start Location & Homeport

i in Naut. Miles

142 deploy dist(i, j) Distance between Homeport i & Superaccident j

in Naut. Miles

143 range(h) Range of Asset h

144 cruise speed(h) Cruise Speed of Asset h

145 max speed(h) Max Speed of Asset h

146 initial loc(h, i) Initial Assignment (Current) of Asset h to

Homeport i

147 reassign time(h, i) Time to Reassign Asset h to Homeport i
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148 deploy time(h, i, j) Time to Deploy Asset h from Homeport i to

Superaccident j

149 demand cutter(j) Demand Level for Cutters at Superaccident j

150 demand boat(j) Demand Level for Boats at Superaccident j

151 demand plane(j) Demand Level for Fixed−Wing Aircraft at

Superaccident j

152 demand heli(j) Demand Level for Rotary−Wing Aircraft at

Superaccident j

153 max hours(h) Max Allowable SAR Hours per Month for Asset h

154 weight1 Importance of Minimizing Reassignment of Assets

/0.00005/

155 weight2 Importance of Minimizing SAR Response

/0.99995/

156 ;

158 Scalars

159 radius Radius of the Earth (nautical miles)

/3440/

160 mission len Average Length of SAR Mission (hours)

/1.5/

161 ;

163 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

164 ∗Define Parameters

165 ∗Latitudes and Longitudes of Starting Locations ’start’

166 latStart(’Apra−Harbor’) = 13.44278;

167 latStart(’Kahului−Harbor’) = 20.8955556;

168 latStart(’Nawiliwili−Harbor’) = 21.9538889;

169 latStart(’Honolulu−Harbor’) = 21.3094444;

170 latStart(’Lihue−Airport’) = 21.97611;

171 latStart(’Antonio−B−Won−Pat−International−Airport’) = 13.48389;
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173 longStart(’Apra−Harbor’) = 144.6578;

174 longStart(’Kahului−Harbor’) = −156.4719444;

175 longStart(’Nawiliwili−Harbor’) = −159.3547222;

176 longStart(’Honolulu−Harbor’) = −157.877778;

177 longStart(’Lihue−Airport’) = −159.3389;

178 longStart(’Antonio−B−Won−Pat−International−Airport’) = 144.7972;

180 ∗Latitudes and Longitudes of Homeports i

181 lati(’Port−of−Midway−Islands’) = 28.21028;

182 lati(’Port−of−Johnston−Atoll’) = 16.73;

183 lati(’Port−of−Wake−Island’) = 19.29556;

184 lati(’Port−of−English−Harbor’) = 3.857778;

185 lati(’Port−of−Betio’) = 1.362222;

186 lati(’Port−of−Kwajalein’) = 9.0478;

187 lati(’Port−of−Majuro’) = 7.094444;

188 lati(’Port−of−Nauru’) = −0.533889;

189 lati(’Pohnpei−Harbor’) = 6.980556;

190 lati(’Tomil−Harbor’) = 9.513333;

191 lati(’Rota−West−Harbor’) = 14.13722;

192 lati(’Port−of−Tinian’) = 14.96444;

193 lati(’Port−of−Saipan’) = 15.22583;

194 lati(’Apra−Harbor’) = 13.44278;

195 lati(’Port−of−Kailua−Kona’) = 19.63916667;

196 lati(’Kawaihae−Harbor’) = 20.03305556;

197 lati(’Kahului−Harbor’) = 20.8955556;

198 lati(’Lahaina−Harbor’) = 20.87416667;

199 lati(’Kaumalapau−Harbor’) = 20.7866667;

200 lati(’Kaunakakai−Harbor’) = 21.0836111;

201 lati(’Nawiliwili−Harbor’) = 21.9538889;

202 lati(’Port−Allen−Harbor’) = 21.8997222;

203 lati(’Kewalo−Harbor’) = 21.2925;

204 lati(’Honolulu−Harbor’) = 21.3094444;
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205 lati(’Ala−Wai−Harbor’) = 21.2847222;

206 lati(’Barbers−Point’) = 21.26638889;

207 lati(’Pearl−Harbor’) = 21.35194444;

208 lati(’Hilo−Harbor’) = 19.733333;

209 lati(’Henderson−Field’) = 28.20139;

210 lati(’Cassidy−International−Airport’) = 1.986111;

211 lati(’Wake−Island−Airport’) = 19.2825;

212 lati(’Bucholz−Army−Airfield’) = 8.72;

213 lati(’Kahului−Airport’) = 20.89861;

214 lati(’Kona−International−Airport’) = 19.73889;

215 lati(’Niue−International−Airport’) = 19.08;

216 lati(’Nausori−International−Airport’) = −18.04333;

217 lati(’La−Tontouta−International−Airport’) = −22.01639;

218 lati(’Enewetak−Auxiliary−Airport’) = 11.34167;

219 lati(’Antonio−B−Won−Pat−International−Airport’) = 13.48389;

220 lati(’Mataveri−International−Airport’) = −27.16472;

221 lati(’Faaa−International−Airport’) = −17.55667;

222 lati(’Marshall−Island−International−Airport’) = 7.064722;

223 lati(’Lihue−Airport’) = 21.97611;

224 lati(’Hilo−International−Airport’) = 19.72028;

225 lati(’Rarotonga−International−Airport’) = −21.20278;

226 lati(’Faleolo−International−Airport’) = −13.82972;

227 lati(’Bauerfield−International−Airport’) = −17.69917;

228 lati(’Pohnpei−International−Airport’) = 6.985;

229 lati(’Chuuk−International−Airport’) = 7.461944;

230 lati(’Saipan−International−Airport’) = 15.11889;

232 longi(’Port−of−Midway−Islands’) = −177.3769;

233 longi(’Port−of−Johnston−Atoll’) = −169.5331;

234 longi(’Port−of−Wake−Island’) = 166.6306;

235 longi(’Port−of−English−Harbor’) = 159.3608;

236 longi(’Port−of−Betio’) = 172.9314;
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237 longi(’Port−of−Kwajalein’) = 167.7422;

238 longi(’Port−of−Majuro’) = 171.3622;

239 longi(’Port−of−Nauru’) = 166.9094;

240 longi(’Pohnpei−Harbor’) = 158.2014;

241 longi(’Tomil−Harbor’) = 138.1211;

242 longi(’Rota−West−Harbor’) = 145.1378;

243 longi(’Port−of−Tinian’) = 145.62;

244 longi(’Port−of−Saipan’) = 145.7358;

245 longi(’Apra−Harbor’) = 144.6578;

246 longi(’Port−of−Kailua−Kona’) = −155.9961111;

247 longi(’Kawaihae−Harbor’) = −155.8286111;

248 longi(’Kahului−Harbor’) = −156.4719444;

249 longi(’Lahaina−Harbor’) = −156.6794444;

250 longi(’Kaumalapau−Harbor’) = −156.9913889;

251 longi(’Kaunakakai−Harbor’) = −157.0275;

252 longi(’Nawiliwili−Harbor’) = −159.3547222;

253 longi(’Port−Allen−Harbor’) = −159.5883333;

254 longi(’Kewalo−Harbor’) = −157.857222;

255 longi(’Honolulu−Harbor’) = −157.877778;

256 longi(’Ala−Wai−Harbor’) = −157.8425;

257 longi(’Barbers−Point’) = −158.099722;

258 longi(’Pearl−Harbor’) = −157.9647222;

259 longi(’Hilo−Harbor’) = −155.0697222;

260 longi(’Henderson−Field’) = −177.3814;

261 longi(’Cassidy−International−Airport’) = −157.3497;

262 longi(’Wake−Island−Airport’) = 166.6367;

263 longi(’Bucholz−Army−Airfield’) = 167.7317;

264 longi(’Kahului−Airport’) = −156.4306;

265 longi(’Kona−International−Airport’) = −156.0456;

266 longi(’Niue−International−Airport’) = −169.9256;

267 longi(’Nausori−International−Airport’) = 178.5592;

268 longi(’La−Tontouta−International−Airport’) = 166.2161;
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269 longi(’Enewetak−Auxiliary−Airport’) = 162.3283;

270 longi(’Antonio−B−Won−Pat−International−Airport’) = 144.7972;

271 longi(’Mataveri−International−Airport’) = −109.4217;

272 longi(’Faaa−International−Airport’) = −149.6114;

273 longi(’Marshall−Island−International−Airport’) = 171.2719;

274 longi(’Lihue−Airport’) = −159.3389;

275 longi(’Hilo−International−Airport’) = −155.0483;

276 longi(’Rarotonga−International−Airport’) = −159.8056;

277 longi(’Faleolo−International−Airport’) = −172.0083;

278 longi(’Bauerfield−International−Airport’) = 168.3197;

279 longi(’Pohnpei−International−Airport’) = 158.2089;

280 longi(’Chuuk−International−Airport’) = 151.8431;

281 longi(’Saipan−International−Airport’) = 144.7294;

283 ∗Latitude and Longitudes of Superaccidents j

284 latj(’Guam−0’) = 13.43116128;

285 latj(’Guam−1’) = 14.04038275;

286 latj(’Hawaii−2’) = 20.81005295;

287 latj(’Hawaii−3’) = 21.99327886;

288 latj(’Hawaii−4’) = 21.37965223;

289 latj(’Hawaii−5’) = 19.96786975;

290 latj(’Guam−6’) = 14.46249624;

291 latj(’Guam−7’) = 8.810670589;

292 latj(’Guam−8’) = 6.997930447;

293 latj(’Hawaii−9’) = 20.05278113;

294 latj(’Hawaii−10’) = 29.70139484;

295 latj(’Hawaii−11’) = 8.079560402;

296 latj(’Hawaii−12’) = 10.69956879;

297 latj(’Hawaii−13’) = 3.780890441;

298 latj(’Hawaii−14’) = 27.80447353;

300 longj(’Guam−0’) = 144.6958643;

108



www.manaraa.com

301 longj(’Guam−1’) = 145.1582315;

302 longj(’Hawaii−2’) = −156.5983198;

303 longj(’Hawaii−3’) = −159.4111511;

304 longj(’Hawaii−4’) = −157.9362542;

305 longj(’Hawaii−5’) = −156.0160702;

306 longj(’Guam−6’) = 145.6002802;

307 longj(’Guam−7’) = 136.4853754;

308 longj(’Guam−8’) = 153.4723302;

309 longj(’Hawaii−9’) = −156.5955048;

310 longj(’Hawaii−10’) = 179.7273981;

311 longj(’Hawaii−11’) = −131.2623265;

312 longj(’Hawaii−12’) = 168.7135488;

313 longj(’Hawaii−13’) = −164.9170452;

314 longj(’Hawaii−14’) = −147.9011772;

316 ∗Convert Lat/Long Degrees to Radians

317 latStart(start) = latStart(start)∗(pi/180);

318 longStart(start) = longStart(start)∗(pi/180);

319 lati(i) = lati(i)∗(pi/180);

320 longi(i) = longi(i)∗(pi/180);

321 latj(j) = latj(j)∗(pi/180);

322 longj(j) = longj(j)∗(pi/180);

324 ∗Calculate the Distances Using Haversine Formula

325 reassign dist(start, i) = 2 ∗ radius ∗ arcsin(sqrt(sin((lati(i) −

latStart(start)) / 2) ∗ sin((lati(i) − latStart(start)) / 2) + cos(

latStart(start)) ∗ cos(lati(i)) ∗ sin((longi(i) − longStart(start))

/ 2) ∗ sin((longi(i) − longStart(start)) / 2)));

326 deploy dist(i, j) = 2 ∗ radius ∗ arcsin(sqrt(sin((latj(j) − lati(i)) /

2) ∗ sin((latj(j) − lati(i)) / 2) + cos(lati(i)) ∗ cos(latj(j)) ∗

sin((longj(j) − longi(i)) / 2) ∗ sin((longj(j) − longi(i)) / 2)));
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328 ∗Specifications of Assets, where Base Distance is Nautical Miles

329 range(’225FT1’) = 8000;

330 cruise speed(’225FT1’) = 12;

331 max speed(’225FT1’) = 16;

332 max hours(’225FT1’) = 220;

334 range(’225FT2’) = 8000;

335 cruise speed(’225FT2’) = 12;

336 max speed(’225FT2’) = 16;

337 max hours(’225FT2’) = 220;

339 range(’110FT1’) = 3300;

340 cruise speed(’110FT1’) = 12.8;

341 max speed(’110FT1’) = 26;

342 max hours(’110FT1’) = 180;

344 range(’110FT2’) = 3300;

345 cruise speed(’110FT2’) = 12.8;

346 max speed(’110FT2’) = 26;

347 max hours(’110FT2’) = 180;

349 range(’FRC1’) = 2500;

350 cruise speed(’FRC1’) = 28;

351 max speed(’FRC1’) = 28;

352 max hours(’FRC1’) = 180;

354 range(’FRC2’) = 2500;

355 cruise speed(’FRC2’) = 28;

356 max speed(’FRC2’) = 28;

357 max hours(’FRC2’) = 180;

359 range(’FRC3’) = 2500;

110



www.manaraa.com

360 cruise speed(’FRC3’) = 28;

361 max speed(’FRC3’) = 28;

362 max hours(’FRC3’) = 180;

364 range(’87Ft1’) = 875;

365 cruise speed(’87Ft1’) = 25;

366 max speed(’87Ft1’) = 25;

367 max hours(’87Ft1’) = 200;

369 range(’87Ft2’) = 875;

370 cruise speed(’87Ft2’) = 25;

371 max speed(’87Ft2’) = 25;

372 max hours(’87Ft2’) = 200;

374 range(’FW1’) = 4585;

375 cruise speed(’FW1’) = 298;

376 max speed(’FW1’) = 298;

377 max hours(’FW1’) = 167;

379 range(’FW2’) = 4585;

380 cruise speed(’FW2’) = 298;

381 max speed(’FW2’) = 298;

382 max hours(’FW2’) = 167;

384 range(’RW1’) = 375;

385 cruise speed(’RW1’) = 125;

386 max speed(’RW1’) = 125;

387 max hours(’RW1’) = 113;

389 range(’RW2’) = 375;

390 cruise speed(’RW2’) = 125;

391 max speed(’RW2’) = 125;
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392 max hours(’RW2’) = 113;

394 range(’RBM1’) = 250;

395 cruise speed(’RBM1’) = 30;

396 max speed(’RBM1’) = 40;

397 max hours(’RBM1’) = 60;

399 range(’RBM2’) = 250;

400 cruise speed(’RBM2’) = 30;

401 max speed(’RBM2’) = 40;

402 max hours(’RBM2’) = 60;

404 range(’RBM3’) = 250;

405 cruise speed(’RBM3’) = 30;

406 max speed(’RBM3’) = 40;

407 max hours(’RBM3’) = 60;

409 range(’RBM4’) = 250;

410 cruise speed(’RBM4’) = 30;

411 max speed(’RBM4’) = 40;

412 max hours(’RBM4’) = 60;

414 range(’RBM5’) = 250;

415 cruise speed(’BM5’) = 30;

416 max speed(’RBM5’) = 40;

417 max hours(’RBM5’) = 60;

419 range(’RBM6’) = 250;

420 cruise speed(’RBM6’) = 30;

421 max speed(’RBM6’) = 40;

422 max hours(’RBM6’) = 60;
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424 range(’RBM7’) = 250;

425 cruise speed(’RBM7’) = 30;

426 max speed(’RBM7’) = 40;

427 max hours(’RBM7’) = 60;

429 range(’RBM8’) = 250;

430 cruise speed(’RBM8’) = 30;

431 max speed(’RBM8’) = 40;

432 max hours(’RBM8’) = 60;

434 ∗Initilize Locations of Assets h to Homeports i

435 initial loc(h, i) = 0;

436 initial loc(’225FT1’, ’Honolulu−Harbor’) = 1;

437 initial loc(’225FT2’, ’Apra−Harbor’) = 1;

438 initial loc(’110FT1’, ’Apra−Harbor’) = 1;

439 initial loc(’110FT2’, ’Apra−Harbor’) = 1;

440 initial loc(’FRC1’, ’Honolulu−Harbor’) = 1;

441 initial loc(’FRC2’, ’Honolulu−Harbor’) = 1;

442 initial loc(’FRC3’, ’Honolulu−Harbor’) = 1;

443 initial loc(’87Ft1’, ’Honolulu−Harbor’) = 1;

444 initial loc(’87Ft2’, ’Honolulu−Harbor’) = 1;

445 initial loc(’FW1’, ’Lihue−Airport’) = 1;

446 initial loc(’FW2’, ’Antonio−B−Won−Pat−International−Airport’) = 1;

447 initial loc(’RW1’, ’Lihue−Airport’) = 1;

448 initial loc(’RW2’, ’Antonio−B−Won−Pat−International−Airport’) = 1;

449 initial loc(’RBM1’, ’Honolulu−Harbor’) = 1;

450 initial loc(’RBM2’, ’Honolulu−Harbor’) = 1;

451 initial loc(’RBM3’, ’Kahului−Harbor’) = 1;

452 initial loc(’RBM4’, ’Kahului−Harbor’) = 1;

453 initial loc(’RBM5’, ’Nawiliwili−Harbor’) = 1;

454 initial loc(’RBM6’, ’Nawiliwili−Harbor’) = 1;

455 initial loc(’RBM7’, ’Apra−Harbor’) = 1;
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456 initial loc(’RBM8’, ’Apra−Harbor’) = 1;

458 ∗Calculate Time To Reassign Assets and Time to Respond to SAR Events

459 ∗Use ’Big−M’ Concept to Prevent Assignment Mismatches

460 reassign time(h, i) = 1000000;

461 reassign time(’225FT1’, i)= reassign dist(’Honolulu−Harbor’, i)/

cruise speed(’225FT1’);

462 reassign time(’225FT2’, i) = reassign dist(’Apra−Harbor’, i)/

cruise speed(’225FT2’);

463 reassign time(’110FT1’, i) = reassign dist(’Apra−Harbor’, i)/

cruise speed(’110FT1’);

464 reassign time(’110FT2’, i) = reassign dist(’Apra−Harbor’, i)/

cruise speed(’110FT2’);

465 reassign time(’FRC1’, i) = reassign dist(’Honolulu−Harbor’, i)/

cruise speed(’FRC1’);

466 reassign time(’FRC2’, i) = reassign dist(’Honolulu−Harbor’, i)/

cruise speed(’FRC2’);

467 reassign time(’FRC3’, i) = reassign dist(’Honolulu−Harbor’, i)/

cruise speed(’FRC3’);

468 reassign time(’87Ft1’, i) = reassign dist(’Honolulu−Harbor’, i)/

cruise speed(’87Ft1’);

469 reassign time(’87Ft2’, i) = reassign dist(’Honolulu−Harbor’, i)/

cruise speed(’87Ft2’);

470 reassign time(’FW1’, i) = reassign dist(’Lihue−Airport’, i)/cruise speed

(’FW1’);

471 reassign time(’FW2’, i) = reassign dist(’Antonio−B−Won−Pat−International

−Airport’, i)/cruise speed(’FW2’);

472 reassign time(’RW1’, i) = reassign dist(’Lihue−Airport’, i)/cruise speed

(’RW1’);

473 reassign time(’RW2’, i) = reassign dist(’Antonio−B−Won−Pat−International

−Airport’, i)/cruise speed(’RW2’);
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474 reassign time(’RBM1’, i) = reassign dist(’Honolulu−Harbor’, i)/

cruise speed(’RBM1’);

475 reassign time(’RBM2’, i) = reassign dist(’Honolulu−Harbor’, i)/

cruise speed(’RBM2’);

476 reassign time(’RBM3’, i) = reassign dist(’Kahului−Harbor’, i)/

cruise speed(’RBM3’);

477 reassign time(’RBM4’, i) = reassign dist(’Kahului−Harbor’, i)/

cruise speed(’RBM4’);

478 reassign time(’RBM5’, i) = reassign dist(’Nawiliwili−Harbor’, i)/

cruise speed(’RBM5’);

479 reassign time(’RBM6’, i) = reassign dist(’Nawiliwili−Harbor’, i)/

cruise speed(’RBM6’);

480 reassign time(’RBM7’, i) = reassign dist(’Apra−Harbor’, i)/cruise speed

(’RBM7’);

481 reassign time(’RBM8’, i) = reassign dist(’Apra−Harbor’, i)/cruise speed

(’RBM8’);

483 deploy time(h, i, j) = deploy dist(i, j)/max speed(h);

484 deploy time(h, i, j)$(deploy dist(i, j) >= range(h)) = 1000000;

486 ∗Set the Demand Levels for Each Superaccident Site

487 demand boat(j) = 0;

488 demand boat(’Guam−0’) = 6;

489 demand boat(’Guam−1’) = 0;

490 demand boat(’Hawaii−2’) = 6;

491 demand boat(’Hawaii−3’) = 3;

492 demand boat(’Hawaii−4’) = 12;

493 demand boat(’Hawaii−5’) = 1;

495 demand cutter(j) = 0;

496 demand cutter(’Guam−6’) = 2;

497 demand cutter(’Guam−7’) = 2;
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498 demand cutter(’Guam−8’) = 2;

499 demand cutter(’Hawaii−9’) = 2;

500 demand cutter(’Hawaii−10’) = 0;

501 demand cutter(’Hawaii−11’) = 0;

502 demand cutter(’Hawaii−12’) = 0;

503 demand cutter(’Hawaii−13’) = 0;

504 demand cutter(’Hawaii−14’) = 0;

506 demand heli(j) = 0;

507 demand heli(’Guam−0’) = 1;

508 demand heli(’Guam−1’) = 0;

509 demand heli(’Hawaii−2’) = 2;

510 demand heli(’Hawaii−3’) = 1;

511 demand heli(’Hawaii−4’) = 1;

512 demand heli(’Hawaii−5’) = 1;

514 demand plane(j) = 0;

515 demand plane(’Guam−6’) = 1;

516 demand plane(’Guam−7’) = 0;

517 demand plane(’Guam−8’) = 0;

518 demand plane(’Hawaii−9’) = 3;

519 demand plane(’Hawaii−10’) = 0;

520 demand plane(’Hawaii−11’) = 0;

521 demand plane(’Hawaii−12’) = 0;

522 demand plane(’Hawaii−13’) = 0;

523 demand plane(’Hawaii−14’) = 0;

526 Binary Variables

527 x(h, i) if Asset h is Assigned to Homeport i

528 ;
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530 Integer Variables

531 y(h, i, j) Number of Times Asset h is Poised to Respond to

Superaccident j from Homeport i

532 ;

534 Variables

535 z ‘ Objective Function Value

536 reassign Cost Incurred By Reassignment (hours)

537 deploy Cost Incurred By Deployment (hours)

538 util(h) Level of Utilization for Each Asset

539 ;

541 Equations

542 objfun Objective Function

543 assignLimit(h) Each Asset Must Be Assigned to 1 Homeport

544 flowBalance(h, i, j) Asset Can Only Deploy From Homeport if Assigned

to Homeport

545 meetCutterDemand(j) All Cutter Demand Must Be Met

546 meetBoatDemand(j) All Boat Demand Must Be Met

547 meetFWDemand(j) All Fixed−Wing Demand Must Be Met

548 meetRWDemand(j) All Rotary−Wing Demand Must Be Met

549 reassignTime Define Levels of Reassignment

550 deployTime Define Levels of Deployment

551 stopReassign1(a, f) Prevents Infeasible Assignment

552 stopReassign2(b, f) Prevents Infeasible Assignment

553 stopReassign3(c, e) Prevents Infeasible Assignment

554 stopReassign4(d, e) Prevents Infeasible Assignment

555 hourCaps(h) Upper Bound on SAR Utilization Levels for Each

Asset h

556 utilLevels(h) Define Levels of Utilization

557 ;
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559 objfun.. z =e= reassign ∗ weight1 + deploy ∗ weight2;

560 assignLimit(h).. sum(i, x(h, i)) =e= 1;

561 flowBalance(h, i, j).. y(h, i, j) =l= 100∗x(h, i);

562 meetCutterDemand(j).. sum(a, sum(i, y(a, i, j))) =g= demand cutter(j)

;

563 meetBoatDemand(j).. sum(b, sum(i, y(b, i, j))) =g= demand boat(j);

564 meetFWDemand(j).. sum(c, sum(i, y(c, i, j))) =g= demand plane(j);

565 meetRWDemand(j).. sum(d, sum(i, y(d, i, j))) =g= demand heli(j);

566 reassignTime.. reassign =g= sum(h, sum(i, reassign time(h, i)

∗ x(h, i)));

567 deployTime.. deploy =g= sum(h, sum(i, sum(j, deploy time(h,

i, j) ∗ y(h, i, j))));

568 stopReassign1(a, f).. x(a, f) =e= 0;

569 stopReassign2(b, f).. x(b, f) =e= 0;

570 stopReassign3(c, e).. x(c, e) =e= 0;

571 stopReassign4(d, e).. x(d, e) =e= 0;

572 hourCaps(h).. sum(i, sum(j, (deploy time(h, i, j)∗2 +

mission len)∗y(h, i, j))) =l= max hours(h);

573 utilLevels(h).. util(h) =g= sum(i, sum(j, (deploy time(h, i, j)

∗2 + mission len)∗y(h, i, j)));

575 Model LocationModel1 / all /;

576 LocationModel1.OptCR = 0;

577 Solve LocationModel1 using mip minimizing z;

579 Display z.l, x.l, y.l, util.l, weight1, weight2, reassign.l, deploy.l;

Listing D.1. Location Model 1

1 ∗∗∗Same parameters as above, with adjustment made as described in

Chapter 3∗∗∗

2 ∗∗∗Only consider the current homeports as candidate homeports∗∗∗
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4 ∗Specifications of Assets, where Base Distance is Nautical Miles

5 range(’NEW ASSET’) = 8000;

6 cruise speed(’NEW ASSET’) = 12;

7 max speed(’NEW ASSET’) = 16;

8 max hours(’NEW ASSET’) = 220;

10 Binary Variables

11 x(h, i) if Asset h is Assigned to Homeport i

12 bin(h, i, j) if postured

13 ;

15 Integer Variables

16 y(h, i, j) if Asset h is Poised to Respond to Superaccident j from

Homeport i

17 ;

19 Variables

20 z Objective Function Value

21 maxDist Maximum Distance to SAR Superaccident Site (hours)

22 deploy Cost Incurred By Deployment (hours)

23 util(h) Level of Utilization for Each Asset

24 ;

26 Equations

27 objfun Objective Function

28 assignLimit(h) Each Asset Must Be Assigned to 1 Homeport

29 flowBalance(h, i, j) Asset Can Only Deploy From Homeport if Assigned

to Homeport

30 meetCutterDemand(j) All Cutter Demand Must Be Met

31 meetBoatDemand(j) All Boat Demand Must Be Met

32 meetFWDemand(j) All Fixed−Wing Demand Must Be Met
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33 meetRWDemand(j) All Rotary−Wing Demand Must Be Met

34 maxDisttoSAR Define Maximum Time to SAR Superaccident

35 deployTime Define Levels of Deployment

36 stayPut(h, i) Existing Assets Cannot Leave Current Location

37 hourCaps(h) Upper Bound on SAR Utilization Levels for Each

Asset h

38 utilLevels(h) Define Levels of Utilization

39 UsageCheck(h, i, j) Set bin to 1 if y is used and 0 otherwise

40 ;

42 objfun.. z =e= deploy;

43 assignLimit(h).. sum(i, x(h, i)) =e= 1;

44 flowBalance(h, i, j).. y(h, i, j) =l= 100∗x(h, i);

45 meetCutterDemand(j).. sum(a, sum(i, y(a, i, j))) =g= demand cutter(j)

;

46 meetBoatDemand(j).. sum(b, sum(i, y(b, i, j))) =g= demand boat(j);

47 meetFWDemand(j).. sum(c, sum(i, y(c, i, j))) =g= demand plane(j);

48 meetRWDemand(j).. sum(d, sum(i, y(d, i, j))) =g= demand heli(j);

49 maxDisttoSAR(h, i, j).. maxDist =g= deploy time(h, i, j)∗bin(h, i, j);

50 deployTime.. deploy =g= sum(h, sum(i, sum(j, deploy time(h,

i, j) ∗ y(h, i, j))));

51 stayPut(h, i).. x(h, i) =g= initial loc(h, i);

52 hourCaps(h).. sum(i, sum(j, (deploy time(h, i, j)∗2 +

mission len)∗y(h, i, j))) =l= max hours(h);

53 utilLevels(h).. util(h) =g= sum(i, sum(j, (deploy time(h, i, j)

∗2 + mission len)∗y(h, i, j)));

54 UsageCheck(h, i, j).. bin(h, i, j) =g= y(h, i, j)/100000;

56 Model LocationModel2 / all /;

57 LocationModel2.OptCR = 0;

58 Solve LocationModel2 using mip minimizing z;
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60 Display z.l, x.l, y.l, maxDist.l, util.l, deploy.l;

Listing D.2. Location Model 2
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